版权归原作者所有,如有侵权,请联系我们

[科普中国]-激光核聚变

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

原理

激光核聚变中的靶丸是球对称的3。球的中心区域(半径约为3毫米)充有低密度(≤1克/厘米3)的氘、氚气体。球壳由烧蚀层和燃料层组成:烧蚀层的厚度为200—300微米,材料是二氧化硅等低Z(原子序数)材料;燃料层的厚度约300微米,材料是液态氘、氚,其质量约5毫克。有的靶丸的中心区域是真空,球壳由含有氘、氚元素的塑料组成。有的靶丸则用固体氘、氚燃料,球壳由玻璃组成。2
当激光对称照射在靶丸表面上时,烧蚀层表面材料便蒸发和电离,在靶丸周围形成等离子体。激光束的部分能量在临界密度层处(该处的等离子体频率与入射的激光频率相等)被反射掉,另一部分能量则被等离子体吸收并加热等离子体。等离子体的热量通过热传导穿过临界密度层向烧蚀层内传递,烧蚀层材料蒸发并向四周飞散产生反作用力(类似火箭推进原理),将靶丸球壳向靶心压缩(爆聚)产生传播的球形激波,使靶丸内氘、氚燃料的密度和温度增加,这种效应称为向心爆聚。如果激光脉冲的波形选得合适,则向心传播的球形激波可会聚到靶丸球心区域,使球心区域一部分氘、氚燃料优先加热,形成热斑。当热斑中的温度高到足以产生聚变反应时,则释放出的聚变能量就可驱动通过靶丸径向向外传播的超声热核爆炸波,并在靶丸物质移动之前就能将燃料层的聚变燃料加热并产生聚变反应,最后将烧蚀层毁掉。因此,激光束的能量仅用于产生向心爆聚和加热靶心的热斑燃料上,不需将整个靶丸均匀加热到热核聚变温度,从而降低了对激光器功率的要求。2

方法实现激光核聚变有直接驱动法和间接驱动法两种:①直接驱动法是将激光束直接照射在靶丸表面上,驱动器大多是钕玻璃激光器。优点是激光束的能量利用效率高,运行可靠,且可进行时空控制。缺点是必须要求激光束均匀照射在靶丸表面上,否则会造成向心爆聚的不对称,还可能在烧蚀层等离子体中产生不稳定性,使靶壳破坏 ,造成靶壳和核聚变燃料相互混合而降低压缩(爆聚)效果。此外激光功率的耦合效率(5%—10%)和重复发射脉冲的频率(每秒输出1—10个激光脉冲)都不够高。研究中的新型激光驱动器有KrF准分子激光器及用激光二极管泵浦的固体激光器等。KrF准分子激光器的优点是:波长较短,激光吸收效率高,波形整形能力强,输出脉冲幅度可变动范围大等。但还存在诸多技术问题,如激光器的效率、脉冲的重复频率、光学传输的复杂性、激光器的可靠性与耐用性及高成本等。激光泵浦的固体激光器的优点是重复频率高、效率高,通过变频可使波长变短,获得高功率输出,运行可靠等。存在的问题是激光二极管造价高,并需要找到长寿命荧光的激光材料。②间接驱动法是将含有聚变燃料的靶丸悬在一个用高Z材料(如金)做成的小腔内,激光束通过腔壁上的小孔照射在腔的内壁上(不是直接照射在靶丸上)。腔壁表面物质吸收激光束的能量温度升高,产生软X射线。在薄壁层热材料内,辐射和材料之间几乎是热平衡的,因而形成软X射线的辐射场。辐射热波向冷壁传输,高Z冷壁被加热并发射软X射线,成为软X射线的再发射区。软X射线均匀地照射在腔内靶丸上将其烧蚀,经过向心爆聚等过程产生热核聚变反应。间接法的优点是对激光束光斑的均匀性要求不高,且软X射线能均匀辐照在靶丸表面上,实现对称爆聚。缺点是激光通过时等离子体会驱动参量不稳定性,而且激光束能量的利用效率不及直接驱动法高。2

应用研究目的各国对激光核聚变研究的兴趣并不完全在于获取聚变功率,而是出自军事目的。激光核聚变可用于热核爆炸模拟中的核武器物理的模拟和核爆炸辐射效应的模拟。激光束以很高的功率密度将大量能量集中在靶丸上,能产生与热核爆炸时相应的高温、高压条件,因此利用激光驱动的靶丸爆聚可用于研究核爆炸动力学、爆炸稳定性以及其他物理规律,为核武器的设计和验证数值计算提供有价值的数据。核武器爆炸时会发射大量的X射线、γ射线、中子等,这些辐射造成的破坏效应及其同物质的相互作用,对核武器研究是十分重要的。现在核爆炸辐射效应的研究主要通过地下核试验进行,但试验受到《全面禁止核武器试验条约》的约束。激光核聚变能够产生与核爆炸相应的辐射环境,可当成热核爆炸的小型辐射场,在一定程度上可用来替代地下核试验。激光核聚变的靶丸相当于一枚微型炸弹。靶丸的设计,特别是新的设计思想对核武器的设计也有很大的参考价值。激光核聚变等离子体会产生新的不稳定性模式和强耦合作用,这对等离子体物理的研究极为重要。2

军事意义激光核聚变在军事上的重要用途之一是发展新型核武器,特别是研制新型氢弹4。因为通过高能激光代替原子弹作为氢弹点火装置实现核聚变反应,可以产生与氢弹爆炸同样的等离子体条件,为核武器设计提供物理学数据、检验计算程序,进而研制新型核武器。

20世纪50年代,氢弹就已研制成功。但氢弹是以原子弹作为点火装置的。原子弹爆炸时会产生大量的放射性物质,这类氢弹被称为“不干净的氢弹”。

采用激光作为点火源后,高能激光直接促使氘氚发生热核聚变反应。氢弹爆炸后就不会产生放射性裂变产物,利用激光核聚变方法的氢弹称为“干净的氢弹”。传统的氢弹属于第二代核武器,而“干净的氢弹”则属于第四代核武器。由于不产生剩余核辐射,可以作为“常规武器”使用。

激光核聚变技术上的成熟,制造“干净氢弹”的成本大为降低。因为核聚变的燃料氘几乎取之不尽,而且使热核聚变反应更加容易。通过激光核聚变,可以在实验室内模拟核武器爆炸的物理过程及爆炸效应,为研究核武器物理提供依据,可以在不进行核试验的条件下,拥有安全可靠的核武器,改造现有核弹头,并保持核武器的研究和发展能力。激光核聚变可多次重复、便于测试、节省费用等。

技术的发展对于模拟核试验技术,美国居世界领先地位。美国拥有世界上最大的“诺瓦”激光器、世界上功率最大的X射线模拟器。1998年,美国能源部就开始在劳伦斯利弗莫尔国家实验室启动“国家点火装置工程”。这项军民两用的高能激光核聚变研究工程计划于2003年投入运行。其中的20台激光发生器是研究工作的大型关键设备。法国激光核聚变研究以军事化为主要目标。为确保法国TN-75和TN-81核弹头能始终处于良好状态,1996年,法国原子能委员会就与美国合作实施一项庞大的模拟计划—— “兆焦激光计划”,即高能激光计划。其主要设施是240台激光发生器,可在20纳秒内产生1.8兆焦能量以及240束激光,集中射向一个含有少量氘、氚的直径为毫米级的目标,从而实现激光核聚变5。

20世纪70年代,日本就投入了大量财力、人力和物力进行激光核聚变研究。1998年,日本研制成功了核聚变反应堆上部螺旋线圈装置(LHD)和高15米的复杂真空头,已突破建造大型核聚变反应堆的技术难点。

中国著名物理学家王淦昌于1964年提出激光核聚变的设想,处于当时世界各国的前列。1974年,中国采用一路激光驱动聚氘乙烯靶发生核反应,观察到氘氘反应产生的中子。著名理论物理学家于敏在20世纪70年代中期提出了激光通过入射口、打进重金属外壳包围的空腔、以X光辐射驱动方式实现激光核聚变的设想。1986年,中国激光核聚变实验装置“神光”研制成功。