胚胎干细胞(embryonic stem cell,ESCs,简称ES、EK或ESC细胞。)是早期胚胎(原肠胚期之前)或原始性腺中分离出来的一类细胞,它具有体外培养无限增殖、自我更新和多向分化的特性。无论在体外还是体内环境,ES细胞都能被诱导分化为机体几乎所有的细胞类型。胚胎干细胞研究在美国一直是一个颇具争议的领域,支持者认为这项研究有助于根治很多疑难杂症,因为胚胎干细胞可以分化成多种功能的APSC多能细胞,被认为是一种挽救生命的慈善行为,是科学进步的表现。而反对者则认为,进行胚胎干细胞研究就必须破坏胚胎,而胚胎是人尚未成形时在子宫的生命形式,这有反生命伦理。
简介自1981年Evans和Kaufman首次成功分离小鼠ES细胞,国内外研究人员已在仓鼠、大鼠、兔、猪、牛、绵羊、山羊、水貂、恒河猴、美洲长尾猴以及人类都分离获得了ES细胞,而且已经证明小鼠ES细胞可以分化为心肌细胞、造血细胞、卵黄囊细胞、骨髓细胞、平滑肌细胞、脂肪细胞、软骨细胞、成骨细胞、内皮细胞、黑色素细胞、神经细胞、神经胶质细胞、少突胶质细胞、淋巴细胞、胰岛细胞、滋养层细胞等。人类ES细胞也可以分化为滋养层细胞、神经细胞、神经胶质细胞、造血细胞、心肌细胞等。ES细胞不仅可以作为体外研究细胞分化和发育调控机制的模型,而且还可以作为一种载体,将通过同源重组产生的基因组的定点突变导入个体,更重要的是,ES细胞将会给人类移植医学带来一场革命。
进一步说,胚胎干细胞(ES细胞)是一种高度未分化细胞。它具有发育的全能性,能分化出成体动物的所有组织和器官,包括生殖细胞。研究和利用ES细胞是当前生物工程领域的核心问题之一。ES细胞的研究可追溯到上世纪五十年代,由于畸胎瘤干细胞(EC细胞)的发现开始了ES细胞的生物学研究历程。
目前许多研究工作都是以小鼠ES细胞为研究对象展开的,如:德美医学小组在去年成功的向试验鼠体内移植了由ES细胞培养出的神经胶质细胞。此后,密苏里的研究人员通过鼠胚细胞移植技术,使瘫痪的猫恢复了部分肢体活动能力。随着ES细胞的研究日益深入,生命科学家对人类ES细胞的了解迈入了一个新的阶段。在98年末,两个研究小组成功的培养出人类ES细胞,保持了ES细胞分化为各种体细胞的全能性。这样就使科学家利用人类ES细胞治疗各种疾病成为可能。然而,人类ES 细胞的研究工作引起了全世界范围内的很大争议,出于社会伦理学方面的原因,有些国家甚至明令禁止进行人类ES细胞研究。无论从基础研究角度来讲还是从临床应用方面来看,人类ES细胞带给人类的益处远远大于在伦理方面可能造成的负面影响,因此要求展开人类ES细胞研究的呼声也一浪高过一浪。1
生物学特性形态学特征ES细胞具有与早期胚胎细胞相似的形态结构,细胞核大,有一个或几个核仁,胞核中多为常染色质,胞质胞浆少,结构简单。体外培养时,细胞排列紧密,呈集落状生长。用碱性磷酸酶染色,ES细胞呈棕红色,而周围的成纤维细胞呈淡黄色。细胞克隆和周围存在明显界限,形成的克隆细胞彼此界限不清,细胞表面有折光较强的脂状小滴。细胞克隆形态多样,多数呈岛状或巢状。小鼠ES细胞的直径7 μm~18 μm,猪、牛、羊ES细胞的颜色较深,直径12 μm~18 μm。
分化
ES细胞的全能性指ES细胞在解除分化抑制的条件下能参与包括生殖腺在内的各种组织的发育潜力,即ES细胞具有发育成完整动物体的能力,可以为细胞的遗传操作和细胞分化研究提供丰富的试验材料。ES细胞发育全能性的标志是ES细胞表面表达时相专一性胚胎抗原(Stage specific embryonicant,SSEA),而且可以检查到Oct4基因的表达,这两种蛋白是发育全能性的标志。ES细胞中AKP及端粒酶活性较高,可用于ES细胞分化与否的鉴定。ES细胞的多能性是指ES细胞具有发育成多种组织的能力,参与部分组织的形成。将ES细胞培养在不含分化抑制物的培养基上,可以形成类胚体。将ES细胞在特定培养基进行培养,可以定向分化成特定组织,如ES细胞在含有白血病抑制因子(LIF)和维生素A酸(RA)的培养基上,可以分化形成全壁内胚层,将ES细胞与胚胎细胞共培养或将ES细胞注入囊胚腔中,ES细胞就会参与多种组织的发育。2
功能胚胎干细胞具有多能性(Pluripotency),特点是可以通过细胞分化(Cellular differentiation)成多种组织(所有组织,包括生殖系细胞)的能力,但无法独自发育成一个个体(利用四倍体融合技术可以得到完全由所用ES细胞发育而来的个体)。它可以发育成为外胚层、中胚层及内胚层三种胚层的细胞组织。这里我们所说的多能性与我们平常所理解的多种分化潜能的细胞存在着不同,英文单词中很好区分,一个是pluripotency;一个是multipotency。我们这里理解的多能性是可分化成三胚层的任意细胞,而多种潜能细胞则只能分化成为有限的几种细胞,例如:造血干细胞。在无外界提供分化的刺激之下(即可在实验环境下生长),胚胎干细胞在经过多重细胞分裂之后,仍然能保有万能分化性(但有实验数据表明在培养过程中ES细胞也会发生变化)。成人干细胞能否保有万能分化性,直到现在仍然有争议(目前一般不采用体外传代来扩增成体干细胞)。不过,有研究已示范了多能干细胞可以从成纤维细胞等很多细胞中产生出来,这也就是目前很热的诱导性多能干细胞(induced pluripotentstem cells,iPS cells),目前越来越多的数据显示这种多能干细胞和胚胎干细胞还是存在很大差异的。
天然胚胎里的干细胞是一种“全能”细胞,可以分化成所有类型的细胞。瑞士科学家发现,胚胎细胞全能特性的秘密在于一种蛋白质。
瑞士苏黎世大学发布的新闻公报说,这种蛋白质称为Pramel7,它存在于早期胚胎细胞里,可以阻止基因组里的DNA(脱氧核糖核酸)代码被挂上“封存”的化学标签,保持基因组的开放性。
所有细胞都携带生物体的全套遗传信息,但已分化的细胞,比如血液、骨骼和神经细胞等都只调用与自身功能相关的那部分DNA代码,其余代码会挂上甲基团,基因表达被抑制。甲基化程度越低,基因组就越开放,细胞分化潜力越大。
受精卵处于囊胚阶段时,里面有一团被称为“内细胞群”的细胞,它们具有真正的全能特性。提取这些细胞,在实验室培养皿中让它们无限繁殖但不分化,得到的胚胎干细胞分化潜力也很强,但比内细胞群还是有所不如。
研究人员在《自然·细胞生物学》杂志上报告说,控制Pramel7蛋白质合成的基因在内细胞群里非常活跃,但在人工培养的胚胎干细胞里活跃程度较低。加强该基因在人工胚胎干细胞里的表达,可以降低整个基因组的甲基化水平。
Pramel7蛋白质仅在胚胎发育的最初几天发挥作用,但对维持正常发育至关重要。实验发现,如果关闭相关基因,基因组甲基化水平会急剧升高,干细胞停止发育,导致胚胎死亡。
这一发现可能有助提高人工胚胎干细胞的分化潜力,用于医学研究和器官修复。研究小组希望在此基础上开发出用干细胞治疗严重骨骼损伤的方法。3
类别小鼠ES细胞小鼠ES细胞的分离方法基本成熟,且已广泛应用于生命科学研究的各个领域。1981年Evans首次分离得到小鼠ES细胞,他以手术切除受精后2.5 d小鼠卵巢并结合激素注射干扰子宫环境,从而使胚胎延迟着床,再回收胚胎,将其体外培养于STO细胞饲养层上,结果得到了小鼠ES细胞系。Martin G R以免疫外科法剥离小鼠囊胚滋养层细胞,得到内细胞团(ICM)并将其置于STO细胞饲养层上,培养基为小鼠PSA-1 ES细胞条件培养基,结果也得到小鼠ES细胞。此后,Axelord等用微滴法得到小鼠ES细胞系;Kaufman等用单倍体延迟着床小鼠囊胚建立同源二倍体ES细胞系;Wobus等首次用原代小鼠成纤维细胞作饲养层建立了小鼠ES细胞系;Smith等首次使用大鼠肝细胞条件培养基作为分化抑制物建立了小鼠ES细胞系。Brook F A等进一步完善了小鼠ES细胞的分离方法,以致从许多品系小鼠包括近交系和突变系,都可获得ES细胞。分离小鼠ES细胞并非只能从囊胚,也并非必须依赖饲养层细胞。Dhhaise等将52枚8-细胞小鼠胚胎消化成单个分裂球并培养于小鼠原代成纤维细胞饲养层上,所用培养基为DMEM/F12,并添加100 mL/L的胎牛血清、100 mL/L的新生犊牛血清和0.1 mmol/L的2-巯基乙醇,5天后,出现多个干细胞集落,消化传代后建立了一个ES细胞系MSB1。将MSB1注入SCID(severe combined immunodeficient mice)小鼠,能产生包含三胚层分化物的畸胎瘤,注入52枚囊胚产生了2个活的个体(1雄,1雌),但雄性个体无生殖能力。Tojo等用同样方法从杂交小鼠(C57BL/6×DBA/2)8-细胞胚也得到了ES细胞。小鼠ES细胞具有无限增殖的自我更新能力。Suda Y等将小鼠ES细胞传250代以上没有出现转化的迹象,它们仍具有正常的二倍体核型;在生殖系嵌合体中能产生正常的配子;作为核供体能重组克隆胚胎。上述结果表明小鼠ES细胞是永生性的。
大鼠ES细胞Iannaccone P M等从大鼠PVG近交系分离克隆大鼠ES细胞系-RESC-01,该细胞系对SSEA-1和AKP呈阳性,在大鼠胎儿成纤维细胞饲养层上能很好的增殖,在体内环境能分化形成多种细胞类型。RESC-01细胞系在体外悬浮培养时形成的胚体出现有节律的收缩运动,将其注入囊胚并移植假孕母鼠能生成嵌合体。Kawase等也利用大鼠胎儿成纤维细胞做饲养层,从DA大鼠品系分离建立了RES-DA1ES细胞系,它与小鼠ES细胞形态相似,表达AKP和4C9抗原。Brenin等也用不同的方法分离得到了ES细胞。Sun等以大鼠ES细胞为核供体,得到了核移植后代。Vassilieva等发现大鼠ES细胞表达SSEA-1、Oct-4和IL-6等细胞标记。2
猪ES细胞Piedrahita J A等采用STO、猪成纤维细胞和猪子宫上皮细胞作为饲养层,以DMEM为基础培养液,从猪囊胚ICM分离ES细胞,发现猪囊胚ICM在STO或PMEF饲养层上可以附着增殖,而在猪胎儿成纤维细胞饲养层上虽可附着但增殖甚微,传不过4代即发生死亡。Evans等将6天~7天猪囊胚直接培养于STO饲养层上,挑出ICM细胞经增殖传代培养建立了猪ES细胞系。Strojek R M等认为分离猪ES细胞的最适胚胎为第10天囊胚。研究表明,6日龄~7日龄胚胎在培养过程中极易发生死亡,ICM克隆获得率极低,而第10天的胚胎容易培养,ICM克隆获得率较高,但细胞易于分化。Vasil’ev I M等研究了胚胎发育阶段、培养基种类、饲养层细胞等影响猪ES细胞分离的因素,结果表明不同发育阶段的附植前囊胚是影响猪ES细胞分离的限制性因素。Wheeler M B等报道猪ES细胞能形成正常的嵌合体和包含三胚层分化物的囊状胚体,在维甲酸和DMSO的作用下,猪ES细胞能分化形成上皮细胞、肌肉细胞、脂肪细胞、成纤维细胞等,Miyoshi等从体外授精囊胚分离得到猪ES细胞,并以类ES细胞为核供体,获得了核移植囊胚。国内关于猪ES细胞分离克隆的研究相对较少,李松等分离得到猪ES细胞并传至第2代,在此基础上,徐军等将猪ES细胞传至3代,冯秀亮等将猪ES细胞传至5代,冯书堂等也分离得到猪ES细胞,同时对所分离的细胞进行了初步检测和鉴定,证明其具有多能性。
牛ES细胞Saito等在加有LIF的培养基中对牛ICM进行培养,分离得到牛ES细胞并进行传代。Sims等使用与一般ES细胞分离完全不同的低密度培养法,使用BRL(buffalo rat liver)条件培养基并添加亚硒酸钠、胰岛素、运铁蛋白和50 mL/L胎牛血清,培养6 d~10 d,得到15个ES细胞系,将其作为核供体进行核移植得到659枚重构胚,卵裂率70%,囊胚率24%,将其中34枚胚胎移植27头假孕母体,13头妊娠,最后生出4头犊牛。而Stice S L等报道,以牛ES细胞为核供体建立的重组胚在移植受体后虽然会出现妊娠现象,但妊娠时间不超过60天,主要是因为胎盘畸形发育,包括缺乏子叶以及子宫阜出血反应。若将重组胚与正常8-细胞胚嵌合,则该嵌合胚可发育至85天,胎儿同样缺乏子叶,DNA分析证实50%的嵌合体胎儿组织来源于ES细胞。Ito等分析比较了牛体内和体外培养的桑椹胚分裂球和囊胚ICM分离ES细胞的效果,结果仅在囊胚组获得了类ES细胞。Cibelli等由49枚7日龄牛胚胎ICM分离到27个ES细胞系,用注射法将β-半乳糖苷酶基因导入ES细胞,选择转染的ES细胞注入8-细胞~16-细胞牛胚,其中18枚胚胎移植7头受体,妊娠5周后,得到12个胎儿。对胎儿进行检测,6个胎儿分别在生殖腺或原始生殖细胞(PGCs)中检测到标记基因,表明ES细胞参与生殖系嵌合。Cibelli等建立应用牛胎儿成纤维细胞核移植生产转基因牛类ES细胞的方法,得到6头嵌合体。Mitalipova等自致密桑椹胚分离牛ES细胞,最高一株ES细胞传至150代,且表达SSEA-1、SSEA-3、SSEA-4和c-kit受体。
羊ES细胞Handyside等以绵羊皮肤成纤维细胞和胎儿成纤维细胞作饲养层,从7日龄~8日龄绵羊囊胚分离类ES细胞,结果得到内胚层样细胞而无ES细胞出现。Tsuchiya用免疫外科法分离8 d~9 d绵羊囊胚ICM,培养于STO细胞饲养层上,得到2个类ES细胞系,传至4代。Tillmann等用胎牛肝成纤维细胞作饲养层分离得到传至20代的绵羊类ES细胞和40代的山羊类ES细胞。Modinski等将绵羊ES细胞与囊胚嵌合得到2只嵌合体绵羊。Campbell等用第1代~第3代的类ES细胞作核供体进行核移植,得到了4只绵羊。2
兔ES细胞Graves K H等从兔子附植前囊胚分离得到ES细胞,并进行了初步鉴定,证明它们具有在饲养层上保持未分化状态的增殖能力,体外传代培养1年以上,仍具有正常的核型,且能形成包含三胚层分化物的胚体。之后,Niemann等以PMEF为饲养层,建立了9个兔ES细胞系。Schoonjans L等将兔ES细胞注入囊胚获得了包括生殖系在内的嵌合体兔子。陈颖等以PMEF为饲养层培养兔分割囊胚,结果得到传至7代的兔ES细胞,将第2代的兔ES细胞与囊胚进行嵌合,得到1只皮毛嵌合体仔兔,但未证实ES细胞是否参与了生殖系嵌合。
应用及前景生产克隆动物ES细胞从理论上讲可以无限传代和增殖而不失去其正常的二倍体基因型和表现型,以其作为核供体进行核移植后,在短期内可获得大量基因型和表现型完全相同的个体,ES细胞与胚胎进行嵌合克隆动物,可解决哺乳动物远缘杂交的困难问题,生产珍贵的动物新种。亦可使用该项技术进行异种动物克隆,对于保护珍稀野生动物有着重要意义。1
转基因动物用ES细胞生产转基因动物,可打破物种的界限,突破亲缘关系的限制,加快动物群体遗传变异程度,可以进行定向变异和育种。利用同源重组技术对ES细胞进行遗传操作,通过细胞核移植生产遗传修饰性动物,有可能创造新的物种;利用ES细胞技术,可在细胞水平上对胚胎进行早期选择,这样可以提高选样的准确性,缩短育种时间。
器官组织移植作为一种被称之为“种子细胞”的ES细胞,为临床的组织器官移植提供大量材料。人ES细胞经过免疫排斥基因剔除后,再定向诱导终末器官以避免不同个体间的移植排斥。这样就可能解决一直困扰着免疫学界及医学界的同种异型个体间的移植排斥难题。
用于细胞治疗细胞治疗是指用遗传工程改造过的人体细胞直接移植或输入病人体内,达到治愈和控制疾病的目的。ES细胞经遗传操作后仍能稳定地在体外增殖传代。以ES细胞为载体,经体外定向改造,使基因的整合数目、位点、表达程度和插入基因的稳定性及筛选工作等都在细胞水平上进行,容易获得稳定、满意的转基因ES细胞系,为克服目前基因治疗中导入基因的整合和表达难以控制,以及用作基因操作的细胞在体外不易稳定地被转染和增殖传代开辟了新的途径。
细胞替代治疗和基因治疗的载体
胚胎干细胞最诱人的前景和用途是生产组织和细胞,用于“细胞疗法”,为细胞移植提供无免疫原性的材料。任何涉及丧失正常细胞的疾病,都可以通过移植由胚胎干细胞分化而来的特异组织细胞来治疗。如用神经细胞治疗神经退行性疾病(帕金森病、亨廷顿舞蹈症、阿尔茨海默病等),用胰岛细胞治疗糖尿病,用心肌细胞修复坏死的心肌等。
胚胎干细胞还是基因治疗最理想的靶细胞。这里的基因治疗是指用遗传改造过的人体细胞直接移植或输入病人体内,达到控制和治愈疾病的目的。这种遗传改造包括纠正病人体内存在的基因突变,或使所需基因信息传递到某些特定类型细胞。
成体干细胞还是不如胚胎干细胞
美国有关科学家13日指出,一些从成年动物体中提取的干细胞,并不如预想的那样能转化成各种器官组织。这表明,在干细胞医疗研究方面,成体干细胞还不能取代胚胎干细胞。有关研究报告将发表在近期出版的《自然》杂志上。
美国科学家这番言论的根据是美国佛罗里达州与英国苏格兰两个独立研究小组的实验结论。佛州小组进行了有关老鼠干细胞研究的比较实验,一组试验利用从成年老鼠骨髓中提取的干细胞;另一组利用从老鼠胚胎中提取的干细胞。科研人员本来希望,从骨髓中提取的干细胞能够分化成原始细胞,如骨髓组织细胞,直至生长成所需要的其他组织或器官。结果是,骨髓干细胞起初分化顺利,但最终并没有分化成原始细胞,却产生了奇怪的类似人体肿瘤内的细胞。同样,苏格兰爱汀堡大学的科研小组,利用从脑细胞中提取的干细胞与胚胎干细胞进行分组比较实验,也发现了类似的问题。
科研人员认为,如果有关人体干细胞试验出现这样的情况,从成年人体的骨髓、大脑等提取的干细胞,分化形成的新细胞或转化的组织将不适用于治疗疾病,而胚胎干细胞的研究则显示出较好的医疗前景。
近年来,生物界认为,从成年动物体的骨髓、血液、体细胞等中所提取的干细胞,加以适当处理的话,就可以转变成为动物体其他部分的组织或器官。诸如,从血液中提出的干细胞,可以分化并转变成心脏、肾、肝脏等组织或器官。
有关专家评论说,即将在《自然》杂志上发表的报告,不仅将影响从事干细胞研究专家的研究思路,而且在美国也会再次引起有关干细胞研究的争论。美国从事干细胞研究的专家一直以来希望更多的从事人类胚胎干细胞的研究,但美国政府却希望科研人员更多的从事除胚胎以外其他来源的干细胞研究。
干细胞移植让患者重新站立成为可能
据统计,颅脑损伤占全身外伤的20%,仅次于四肢伤残居第二位,但其致死致残率远高于其他损伤居第一位;而脊髓损伤我国每年也有1.4万~3.8万人发病。更重要的是,这些疾病往往因为伴有严重的后遗症而成为家庭和社会的负担,我国每年仅仅由于脑和脊髓的功能障碍所需要的医疗护理费用就高达数十亿元。
修复神经干细胞步步为营
干细胞是人体内一类具有自我更新功能,并能分化成特殊种类细胞的细胞,在合适的环境下或给予适当的信号诱导,干细胞可以分化成构建人体的不同细胞。干细胞分两类:胚胎干细胞和组织干细胞,胚胎干细胞是指受精卵分裂到32个细胞前,每一个胚胎干细胞在一定的条件下都可以发育成一个完整的个体;组织干细胞在一定条件下则可以分化成相应的组织细胞。
据步星耀博士介绍,人体的许多组织都存在干细胞,但多数组织中的干细胞数量较少,而骨髓中的干细胞数目较多,提取方便。制备自体干细胞只需进行骨髓穿刺即可。将干细胞从骨髓血液中分离出来,经过培养扩增即可得到大量的自体干细胞。
自体干细胞移植技术对治疗中枢神经损伤和脑损伤疾病有较好效果,其机理主要包括四个环节。第一步,移植到体内的部分干细胞,可定向分化为巨噬细胞,起到清道夫的作用,“吃掉”局部坏死的组织细胞;第二步是在受创组织所处的环境改善后,局部血流量增加,并且局部血管系统可得以修复,可促使患者改善症状;第三步就是把移植的干细胞定向分化为神经胶质细胞(神经细胞的“幼稚”状态);第四步才是神经细胞的再生,包括受损神经的存活和再生以及移植的干细胞定向分化为神经细胞,新的神经环路就此重生。
据步星耀说,目前干细胞移植技术主要有两种方式:一是将部分干细胞直接移植到体内,由体内的信号来引导这部分干细胞分化为成熟的合适的细胞;二是他们在进行上面的移植手术的同时,也可以在病人的病灶部位安装一个干细胞移植泵,将部分干细胞在体外进行培养扩增,使之在体外向所需的方向分化,而后分批用移植泵移植到病人体内。这两种技术结合起来使用对病人的疗效最佳。1
研究与争议胚胎干细胞研究在美国一直是一个颇具争议的领域,支持者认为这项研究有助于根治很多疑难杂症,是一种挽救生命的慈善行为,是科学进步的表现。而反对者则认为,进行胚胎干细胞研究就必须破坏胚胎,而胚胎是人尚未成形时在子宫的生命形式。
因此,如果支持进行胚胎干细胞研究就等于是怂恿他人“扼杀生命”,是不道德的,违反伦理的。
布什坚决反对美国参议院在2006年7月17日就增加政府对胚胎干细胞研究经费拨款的议案进行了辩论。新法案要求,增加联邦政府用于干细胞研究的经费,用于对那些将被遗弃的、处于冷冻状态的临床胚胎进行胚胎干细胞研究。当天进行的辩论可谓相当激烈,正反双方都带着强烈的感情色彩讨论这一议案的利弊。不过,从现在的情形看来,参议院通过此项法案的难度不大。
但让很多人头痛的是总统布什的态度。布什此前已经表示,如果这项议案在参议院获得通过,他将不惜动用总统否决权来阻挠议案付诸实施。17日,白宫再次发表了类似声明,称“他(总统)将对议案行使否决权”。
科学家过去研究胚胎干细胞,都必须在胚胎上“大动手脚”,有人认为这样做就牺牲了胚胎,即间接牺牲了一个未来的小生命,所以惹来了很多伦理上的反对和斥责。白宫的声明说:“这项议案将强迫美国的纳税人为人类胚胎干细胞研究提供经济支持,而我们不应使用公众的钱来支持摧毁生命的行为。”
当然,布什也有很多同盟军,他们也都认为,胚胎是一个未来的生命,不能因为进行科学研究而扼杀生命。再者说,对胚胎干细胞的研究现在还只是停留在最初阶段,距离临床试验还有很长一段路要走,更不用说用于治疗疾病了。“我们不能仅仅因为有的胚胎不能发育成生命就残忍地在它们上面做试验。”共和党参议员吉姆·伯恩宁说。“有谁知道在这一研究领域取得实质性进展之前需要破坏多少胚胎呢?”
据理力争支持者,特别是一些温和派的共和党人认为,美国人民需要扩大干细胞研究。他们指出,根据自愿的原则,利用一些废弃的胚胎扩大干细胞研究是为美国人所做的正确的事情。干细胞研究被认为是找到老年性痴呆症、帕金森症等神经和大脑疾病新疗法的希望。
前美国第一夫人南希·里根就是一位积极推动此议案形成的热心人士。她的丈夫、前总统里根2004年死于阿尔茨海默氏痴呆症,而如果干细胞研究取得突破,这种疾病以后就有望治愈。“她依然在为此事而到处奔波。”民主党参议员埃德华德·肯尼迪说。“我们都知道,正是由于她的努力,这项议案才有今天,也才有可能取得一个理想的结果。”
参议院司法委员会主席斯佩克特本人是一位癌症患者,而癌症也是一种可以依赖干细胞研究获得治疗的疾病,因此,他也是此议案的拥趸之一。他还把这项议案的反对者比喻作阻挠科学车轮前进的阻力,称他们是“愚蠢的,不理智的,绝对荒谬的。”
而参议院多数党领袖弗里斯特也持有这种观点。他说:“我们将团结起来,使得科学在伦理道德的界限之内继续前进。”
2006年7月19日,美国总统布什上任5年来首次动用总统否决权,否决了参议院一项旨在资助胚胎干细胞研究的提案,此举引起了社会各界的广泛争论和关注。与此相对的是,7月24日,欧盟25国负责科研的部长在布鲁塞尔开会决定,将继续资助欧盟科研人员有限度地开展人类干细胞研究。道德层面的争议已经成为制约干细胞研究的瓶颈,科学与伦理再次成为对立的两方。
获法律支持美国一家联邦上诉法院2011年4月29日作出裁决,允许美国联邦政府继续资助人类胚胎干细胞研究。这是美国人类胚胎干细胞研究支持者取得的一个重要阶段性胜利。
哥伦比亚特区巡回上诉法院当天在裁决书中宣布,撤销美国一地方法院法官去年发布的人类胚胎干细胞研究临时禁令。判决书还认为,联邦资金资助人类胚胎干细胞研究似乎并不违反美国相关法律。
去年8月23日,哥伦比亚特区地方法院法官罗伊斯·兰伯思针对两位美国干细胞研究人员提起的诉讼发布临时禁令,以违反法律等为由禁止联邦资金资助人类胚胎干细胞研究。兰伯思认为,国会曾经通过的一份修正案 “明确禁止”用联邦资金资助所有需要破坏人类胚胎的研究,而所有人类胚胎干细胞研究都会包含破坏胚胎的步骤,因此美国国家卫生研究院颁布的人类胚胎干细胞研究规范违反了该修正案。
但哥伦比亚特区巡回上诉法院在最新裁决中指出,上述修正案存在“模糊”之处,美国国家卫生研究院有理由认为,该修正案虽然禁止从胚胎中提取干细胞的破坏性行为,但并未禁止联邦资金资助那些仅使用人类胚胎干细胞的研究项目。上诉法院据此宣布兰伯思去年发布的临时禁令无效。
美国白宫一名发言人当天表示,上诉法院的裁决对美国科学家和全世界的患者来说是一个“胜利”,患者们将会从干细胞研究所带来的医学突破中受益。
人类胚胎干细胞研究在美国颇受争议。2001年,美国前任总统布什规定联邦资金仅准许用于资助已经存在的胚胎干细胞研究。现任总统奥巴马2009年通过行政命令解除了上述限制,美国国家卫生研究院随之于当年出台胚胎干细胞研究规范。4
争议正式结束美国联邦最高法院今天驳回了要求禁止美国政府资助人类胚胎干细胞(human embryonic stem cells,简称hESCs)相关研究的诉讼。这一决定结束了一场长期围绕人类胚胎干细胞研究的法律斗争。三年多来,该斗争已经使得人类胚胎干细胞研究蒙上了一层阴影。胚胎干细胞领域的研究者这次理应欢呼了。
研究新方向由于胚胎干细胞在医学应用上存在着免疫排斥以及伦理窘境等壁垒,科学家正在尝试其他途径代替胚胎干细胞。科学家试图通过细胞重编程的方法让病人的体细胞转化为干细胞供自身使用,主要的几个分支包括细胞核移植,患者体细胞与供体胚胎干细胞的细胞融合,以及诱导多能干细胞。其中诱导多能干细胞在近五年内新兴并迅速得到学术界的高度关注。
本词条内容贡献者为:
江松敏 - 副教授 - 复旦大学