概念
兰勃特投影按投影面与地球面的相对位置,分为正轴、横轴和斜轴3种。在正轴投影中,纬线为同心圆,其间隔由投影中心向外逐渐缩小,经线为同心圆半径。在横轴投影中,中央经线和赤道为相互垂直的直线,其他经线和纬线分别为对称于中央经线和赤道的曲线。在斜轴投影中,中央经线为直线,其他经线为对称于中央经线的曲线。该投影无面积变形,角度和长度变形由投影中心向周围增大。横轴投影和斜轴投影较常应用,东西半球图和分洲图多用此投影。
常用的包括:兰勃特等角圆锥投影、兰勃特等积方位投影。前者属于正轴等角圆锥投影,后者属于正轴等积方位投影。1
圆锥投影以圆锥面作为投影面,使圆锥面与地球面相切或相割,将地球面上的经纬线投影到圆锥面上,然后把圆锥面沿一条母线剪开展为平面而成。由于圆锥面与地球面相切或相割的位置不同,有正轴圆锥投影、横轴圆锥投影和斜轴圆锥投影。正轴圆锥投影是在投影时使圆锥的轴与地轴重合。投影后的经纬线形状比较简单,称为标准网。纬线为以圆锥顶点为圆心的同心圆弧,经线为由圆锥顶点向外放射的直线束,经线间的夹角小于相应的经度差。设地球面上两条经线的夹角为λ,投影在平面上为δ,则δ=cλ(c—圆锥常数)。纬线半径ρ随纬度φ而变化,即ρ是纬度φ的函数,一般用ρ=f(φ)式表达。故正轴圆锥投影的一般公式为:ρ=f(φ),δ=cλ。圆锥常数c与圆锥的切、割位置等条件有关。对于不同的圆锥投影,它是不同的。但对于某一个具体的圆锥投影,C值是固定的。总的说来,C值小于1,大于0,即0