微波通信(Microwave Communication),是使用波长在0.1毫米至1米之间的电磁波——微波进行的通信。该波长段电磁波所对应的频率范围是300 MHz(0.3 GHz)~3THz。
与同轴电缆通信、光纤通信和卫星通信等现代通信网传输方式不同的是,微波通信是直接使用微波作为介质进行的通信,不需要固体介质,当两点间直线距离内无障碍时就可以使用微波传送。利用微波进行通信具有容量大、质量好并可传至很远的距离的特点,因此是国家通信网的一种重要通信手段,也普遍适用于各种专用通信网。
技术简介随着我国通信技术现代化建设的发展,通信技术中的数字化以及信息化建设越来越广泛,数字微波通信技术的研究也取得了新的成就。在现代通信技术中,微波通信占有非常重要的重要。近年来,微波通信在许多领域都得到了广泛的应用,如移动通信、卫星通信等。微波的频率非常高,凡是处于300MHz至300GHz频段内的通信,都可称之为微波通信。1
微波通信于20世纪中期开始应用于实际生活当中,其能够实现大容量通信,且建设速度较快,质量较高,通信过程稳定,维护便捷,由于上述优点,使其成为目前应用极为频繁的传输方式。相比光纤通信以及卫星通信,微波通信的通信网更为容易建立,即使处于山区、农村等较为偏僻的地区,也可以实现微波通信。
中国微波通信广泛应用L、S、C、X诸频段,K频段的应用尚在开发之中。由于微波的频率极高,波长又很短,其在空中的传播特性与光波相近,也就是直线前进,遇到阻挡就被反射或被阻断,因此微波通信的主要方式是视距通信,超过视距以后需要中继转发。一般说来,由于地球曲面的影响以及空间传输的损耗,每隔50公里左右,就需要设置中继站,将电波放大转发而延伸。这种通信方式,也称为微波中继通信或称微波接力通信。长距离微波通信干线可以经过几十次中继而传至数千公里仍可保持很高的通信质量。
|| || 无线电波划分
发展简史微波的发展是与无线通信的发展是分不开的。1901年马克尼使用800KHz中波信号进行了从英国到北美纽芬兰的世界上第一次横跨大西洋的无线电波的通信试验,开创了人类无线通信的新纪元。无线通信初期,人们使用长波及中波来通信。20世纪20年代初人们发现了短波通信,直到20世纪60年代卫星通信的兴起,它一直是国际远距离通信的主要手段,并且对目前的应急和军事通信仍然很重要。
用于空间传输的电波是一种电磁波,其传播的速度等于光速。无线电波可以按照频率或波长来分类和命名。我们把频率高于300MHz的电磁波称为微波。由于各波段的传播特性各异,因此,可以用于不同的通信系统。例如,中波主要沿地面传播,绕射能力强,适用于广播和海上通信。而短波具有较强的电离层反射能力,适用于环球通信。超短波和微波的绕射能力较差,可作为视距或超视距中继通信。
1931年在英国多佛与法国加莱之间建起世界上第一条微波通信电路。第二次世界大战后,微波接力通信得到迅速发展。1955年对流层散射通信在北美试验成功。20世纪50年代开始进行卫星通信试验,60年代中期投入使用。由于微波波段频率资源极为丰富,而微波波段以下的频谱十分拥挤,为此移动通信等也向微波波段发展。此外数字技术及微电子技术的发展,也促进了微波通信逐步从模拟微波通信向数字微波通信过渡。
微波通信是二十世纪50年代的产物。由于其通信的容量大而投资费用省(约占电缆投资的五分之一),建设速度快,抗灾能力强等优点而取得迅速的发展。20世纪40年代到50年代产生了传输频带较宽,性能较稳定的微波通信,成为长距离大容量地面干线无线传输的主要手段,模拟调频传输容量高达2700路,也可同时传输高质量的彩色电视,而后逐步进入中容量乃至大容量数字微波传输。80年代中期以来,随着频率选择性色散衰落对数字微波传输中断影响的发现以及一系列自适应衰落对抗技术与高状态调制与检测技术的发展,使数字微波传输产生了一个革命性的变化。特别应该指出的是80年代至90年代发展起来的一整套高速多状态的自适应编码调制解调技术与信号处理及信号检测技术的迅速发展,对现今的卫星通信,移动通信,全数字HDTV传输,通用高速有线/无线的接入,乃至高质量的磁性记录等诸多领域的信号设计和信号的处理应用,起到了重要的作用。
国外发达国家的微波中继通信在长途通信网中所占的比例高达50%以上。据统计美国为66%,日本为50%,法国为54%。我国自1956年从东德引进第一套微波通信设备以来,经过仿制和自发研制过程,已经取得了很大的成就,在1976年的唐山大地震中,在京津之间的同轴电缆全部断裂的情况下,六个微波通道全部安然无恙。九十年代的长江中下游的特大洪灾中,微波通信又一次显示了它的巨大威力。在当今世界的通信革命中,微波通信仍是最有发展前景的通信手段之一。
频带划分微波按波长不同可分为分米波,厘米波、毫米波及亚毫米波,分别对应于特高频UHF(0.3~3GHz)、超高频SHF(3~30GHz)、极高频EHF(30~300GHz)及至高频THF(300GHz~3THz)。
微波中部分频段常用代号来表示,如表所示。
|| || 微波部分频段的代号
其中L频段以下适用于移动通信。S至Ku频段适用于以地球表面为基地的通信,包括地面微波接力通信及地球站之间的卫星通信,其中C频段的应用最为普遍,毫米波适用于空间通信及近距离地面通信。为满足通信容量不断增长的需要,已开始采用K和Ka频段进行地球站与空间站之间的通信。60GHz的电波在大气中衰减较大,适宜于近距离地面保密通信。94GHz的电波在大气中衰减很少,适合于地球站与空间站之间的远距离通信。
系统构成系统设备微波通信系统由发信机、收信机、天馈线系统、多路复用设备、及用户终端设备等组成,如图2所示。
其中,发信机由调制器、上变频器、高功率放大器组成,收信机由低噪声放大器、下变频器,解调器组成;天馈线系统由馈线、双工器及天线组成。用户终端设备把各种信息变换成电信号。多路复用设备则把多个用户的电信号构成共享一个传输信道的基带信号。在发信机中调制器把基带信号调制到中频再经上变频变至射频,也可直接调制到射频。
在模拟微波通信系统中,常用的调制方式是调频;在数字微波通信系统中,常用多相数字调相方式,大容量数字微波则采用有效利用频谱的多进制数字调制及组合调制等调制方式。发信机中的高功率放大器用于把发送的射频信号提高到足够的电平,以满足经信道传输后的接收场强。收信机中的低噪声放大器用于提高收信机的灵敏度;下变频器用于中频信号与微波信号之间的变换以实现固定中频的高增益稳定放大;解调器的功能是进行调制的逆变换。
微波通信天线一般为强方向性、高效率、高增益的反射面天线,常用的有抛物面天线、卡塞格伦天线等,馈线主要采用波导或同轴电缆。在地面接力和卫星通信系统中,还需以中继站或卫星转发器等作为中继转发装置。
通信方式地面上的远距离微波通信通常采用中继(接力)方式进行,原因如下:
微波波长短,具有视距传播特性。而地球表面是个曲面,电磁波长距离传输时,会受到地面的阻挡。为了延长通信距离,需要在两地之间设立若干中继站,进行电磁波转接
微波传播有损耗,随着通信距离的增加信号衰减,有必要采用中继方式对信号逐段接收、放大后发送给下一段,延长通信距离。
距离地面微波中继通信系统如图3所示。
在微波传输过程中,有不同类型的微波站,如图4示。
终端站:只有1个传输方向的微波站。
中继站:具有2个传输方向,为了解决微波视通问题,需要增加的微波站。分为有源中继站和无源中继站两种。
枢纽站:具有3个或3个以上传输方向,对不同方向的传输通道进行转接的微波站,或称为HUB站。
分路站:具有2个传输方向,因传输业务上下的需要而设立的微波站。
主要特点微波通信具有良好的抗灾性能,对水灾、风灾以及地震等自然灾害,微波通信一般都不受影响。但微波经空中传送,易受干扰,在同一微波电路上不能使用相同频率于同一方向,因此微波电路必须在无线电管理部门的严格管理之下进行建设。此外由于微波直线传播的特性,在电波波束方向上,不能有高楼阻挡,因此城市规划部门要考虑城市空间微波通道的规划,使之不受高楼的阻隔而影响通信。
超大带宽容量传统频段微波产品一般指6GHz~42GHz传统频段的微波,可以利用XPIC,MIMO和CA等无线技术在有限频率资源下不断倍增传输容量。通过射频单元的简单叠加,以及空口物理链路汇聚或链路层汇聚技术,传统频段微波速率可达10GBit/s,新一代E-band微波单空口超过10Gbit/s。满足目前最新的5G移动通信回传速率的需求。
支持多种传输业务支持PDH、SDH业务、以太业务和IP业务。能够很好满足现网2G、3G和4G移动业务的带宽需求和未来即将商用的5G移动业务容量需求。
低时延微波传输超低时延的优良特性不仅能满足2G、3G和4G移动网络的要求,能很好满足5G移动更低时延 (例如无人驾驶, 智能制造和远程医疗等)应用需求。
提供高精度时间同步1588v2为基站提供精准的频率和相位时钟同步,能为TDD移动通信系统提供全网时钟,降低移动网络安装、维护成本。
快速部署分组微波设备的全室外解决方案,无需铺设传输光纤,无需机房,安装部署简单快捷,符合4G和5G密集小型化快速部署的需求。5G移动基站进一步缩短建站距离,每平方公里增加基站数量,微波传输作为回传解决方案能为移动网络的部署大大节省时间。
抗灾抗人为破坏相对于光纤传输, 微波通信是通过空中无线信号传输, 能够防挖, 防爆破等人为破坏, 防地震、防火灾等自然灾害, 受损时微波传输恢复通信链路快。在自然灾害和光纤无法达到地区, 微波传输可以作为应急移动通信的传输网络。2
技术原理由于微波在空中的传播特性与光波相近,也就是直线前进,遇到阻挡就被反射或被阻断,因此数字微波通信的主要方式是视距通信。受地球曲面和空问传输衰落较大的影响,要进行远距离的通信,需要接力传输,即对信号进行多次中继转发(包括变频、中放等环节),这种数字通信方式,也称为地面数字微波中继传输方式。终端站处在数字微波传输线路的两端,中继站是数字微波传输线路数量最多的站型,一般都有几个到几十个,每隔 50km 左右,就需要设置一个中继站,中继站的主要作用是将数字信号接收,进行放大,再转发到下一个中继站,并确保传输数字信号的质量。所以数字微波传输又称数字微波接力传输。这种长距离数字微波传输干线,可以经过几十次中继而传至数千公里仍可保持很高的传输质量。3
就微波通信的性能而论,数字微波通信的特点可概括为微波、多路、接力六个字。
“微波”指通信频率是微波频段,又包括分米波、厘米波和毫米波。微波频段宽度是长波、中波、短波及特高频几个频段总和的l000倍。微波频率不受天电干扰和工业干扰及太阳黑子变化的影响,通信的可靠性较高。还因微波频率高,所以其天线尺寸较小,往往做成面式天线,其天线增益较高、方向性很强。
“多路”指微波通信不但总的频段宽,传输容量大,而且其通信设备的通频带也可以做得很宽。例如,一个4000MHz的设备,其通频带按l%估算,可达40MHz。模拟微波的960路电话总频谱约为4MHz带宽。可见,一套微波收发信设备可传输的话路数是相当多的。因数字信号占用带宽较宽,所以数字微波通信设备在选择适当的调制方式后,可传输的话路容量仍然是相当多的。
“接力”因微波频段的电磁波在视距范围内是沿直线传播的,通信距离一般为40~50km。考虑到地球表面的弯曲,在进行长距离通信时,就必须采用接力的传播方式,发端信号经若干中间站多次转发,才能到达收端。
主要类型根据通信方式和确定信道主要性质的传输媒质的不同,微波通信可分为大气层视距地面微波通信、对流层超视距散射通信、穿过电离层和外层自由空间的卫星通信,以及主要在自由空间中传播的空间通信。按基带信号形式的不同,微波通信可分为主要用于传输多路载波电话、载波电报、电视节目等的模拟微波通信,以及主要用于传输多路数字电话、高速数据、数字电视、电视会议和其它新型电信业务的数字微波通信。
微波接力通信利用微波视距传播以接力站的接力方式离微波通信,也称微波中继通信。微波接力系统由两端的终端站及中间的若干接力站组成,为地面视距点对点通信。各站收发设备均衡配置,站距约50km,天线直径1.5~4m,半功率角3~5°,发射机功率1~10W,接收机噪声系数3~10dB(相当噪声温度290~261K),必要时二重分集接收。模拟调频微波容量可达1800~2700路,数字多进制正交调幅微波容量可达144Mbit/s。设备投资和施工费用较少,维护方便;工程施工与设备安装周期较短,利用车载式微波站,可迅速抢修沟通电路。
对流层散射通信利用对流层中媒质的不均匀体的不连续界面对微波的散射作用实现的超视距无线通信。常用频段为0.2~5GHz,为地面超视距点对点通信。跨距数百公里,大型广告牌(抛物面)天线等效直径可达30~35m,射束半功率角1~2°,有孔径介质耦合损耗,发射机功率5~50kW,四重分集接收,容量数十话路至百余话路。对流层散射通信一般不受太阳活动及核爆炸的影响,可在山区、丘陵、沙漠、沼泽、海湾岛屿等地域建立通信电路。
卫星通信地球站之间利用人造地球卫星上的转发器转发信号的无线电通信,为地一空视距多址通信系统,卫星中继站受能源和散热条件的限制,故地-空设备偏重配置。同步卫星系统,空间段单程大于3.6万公里,地面站天线直径15~32m,增益60dB,射束半功率角0.1~1°,需要自动跟踪,发射机功率0.5~5kW。
卫星中继站,下行全球波束用喇叭天线,点波束用抛物面天线,可借助波束分隔进行频率再用。转发器功率数十瓦,带宽一般为36MHz,容量5000~10000话路。卫星通信覆盖面广,时延长,信号易被截获、窃听、甚至干扰。一种容量较小的可适用于稀路由的甚小天线地球站(VSAT)适用于数据通信。
空间通信利用微波在星体(包括人造卫星、宇宙飞船等航天器)之间进行的通信。它包括地球站与航天器、航天器与航天器之间的通信、以及地球站之间通过卫星间转发的卫星通信。地球站与航天器之间的通信分近空通信与深空通信。在深空通信时,为了实现从髙噪声背景中提取微弱信号,需采用特种编码和调制、相干接收和频带压缩等技术。
微波移动通信通信双方或一方处于运动中的微波通信,分陆上、海上及航空三类移动通信。陆上移动通信多使用150,450或900MHz的频段,并正向更高频段发展。海上、航空及陆上移动通信均可使用卫星通信。海事卫星可提供此种移动通信业务。低地球轨道(LEO)的轻卫星将广泛用于移动通信业务。
抗衰落技术微波传输也会受到很多外界因素的干扰而衰落。有时衰落的持续时间很短,在几秒钟至几分钟内,称为快衰落,有时衰落的时间持续十几分钟甚至几个小时,称为慢衰落。衰落时,接收电平高于正常电平称为上衰落,低于正常电平称为下衰落。 衰落时,接收电平低于收信机最低接收电平以下称为深衰落。空间衰落现象对微波通信的影响主要有两个方面:一是接收电平降低,称为平衰落;二是由于衰落的频率选择性而引起传输波形的失真,称为频率选择性衰落。4
吸收衰落大气中的氧分子和水分子能从电磁波吸收能量,导致微波在传播的过程中的能量损耗而产生衰耗。频率越高,站距越长,衰落越严重。
散射衰落雨雾中的大小水滴能够散射电磁波的能量,因而造成电磁波的能量损失而产生衰落。雨雾天气时,对高频微波影响大。
K型衰落多径传输产生的干涉型衰落。由于这种衰落与大气的折射参数K值的变化而变化的,故称为K型衰落。这种衰落在水面、湖泊、平滑的地面时显得特别严重。
波导型衰落由于气象的影响,大气层中会形成不均匀的大气波导。微波射线通过大气波导,则接收点的电场强度包含了”波导层”以外的反射波,形成严重的干扰型衰落,造成通信的中断。
闪烁衰落对流层中的大气常发生大气湍流,大气湍流形成的不均匀的块式层状物使介电系数与周围的不同。当微波射线射到不均匀的块式层状物上来时,将使电波向周围辐射,形成对流层散射。此时接收点也可以接收到多径传来的这种散射波,形成快衰落。由于这种衰落是由于多径产生的,因此称之为闪烁衰落。
对抗这些衰落的技术有自适应均衡、自动发信功率控制(ATPC)、前向纠错(FEC)和分集接收技术等。
|| || 微波抗衰落技术
新型技术自适应调制编码 (AMC) 在移动通信中得到了广泛应用,根据信道质量对编码速率予以调整,以此来获取较高的吞吐量。当无线通信速率比较低的时候,信道估计相对准确,AMC的应用效果较好。5
随着终端移动速度的不断加快, 信道质量已经无法满足信道的变化, 在信道测量错误的情况下,导致AMC调制编码方式和实际情况不相同,影响了系统容量、吞吐量等性能指标,值得相关人员进行深入研究。
无线通信技术共含有两种基础技术,分别为传送技术以及多址技术。Wi MAX使用OFDM调制技术作为基础传送技术。OFDM调制技术令处于高速传播状态的数据流通过,之后再对数据进行转化, 并将转化后的数据分配至传送速率不高的多个正交子信道当中,完成传送过程。
至于多址技术,Wi MAX选用了OFDMA技术。OFDMA技术所使用的方法为频分多址。相比OFDM,该技术具有如下优势:分配方法更为灵活以及相同频带能够实现多个使用热源的运输。OFDMA中的所有使用人员都可以选用具有良好条件的子信道作为传送数据的通道, 完成数据传送工作。而OFDM技术则需要利用整个频带传送数据。
本词条内容贡献者为:
徐恒山 - 讲师 - 西北农林科技大学