工业用途
等离子切割配合不同的工作气体可以切割各种氧气切割难以切割的金属,尤其是对于有色金属(不锈钢、铝、铜、钛、镍)切割效果更佳;其主要优点在于切割厚度不大的金属的时候,等离子切割速度快,尤其在切割普通碳素钢薄板时,速度可达氧切割法的5~6倍、切割面光洁、热变形小、较少的热影响区。
等离子切割机广泛运用于汽车、机车、压力容器、化工机械、核工业、通用机械、工程机械、钢结构、船舶等各行各业。
历史20世纪50年代的传统等离子切割
自20世纪50年代中期等离子弧工艺以来,相当多的研究曾致力于增加弧压缩而不产生双弧。那个时期应用的等离子弧切割现在称为“传统等离子切割”。如果用户正在切割多种类的和不同板厚的金属,传统等离子切割会很繁琐。例如,使用传统等离子工艺切割不锈钢和铝,需要使用不同的气体和气体流量以求在上述两种金属上都获得最佳切割质量。虽然传统等离子切割从20世纪50年代到20世纪90年代居主导地位,但这种工艺常常需要非常昂贵的氩氢混合气体1。
20世纪60年代的双气流技术
双气流技术是在20世纪60年代发明的,它在等离子喷嘴周围增加了另一种保护气体。通常,在双气流操作中,切割气或叫等离子气是氮气或氩氢混合气,而保护气是按照所切割的金属而选择的,使用的典型保护气切割低碳钢时用空气,切割不锈钢时用CO,而切割铝时用氩氢混合气。这种技术在切割碳钢时切割速度要比火焰切割快。该方法的主要优点是喷嘴可以被隐藏在陶瓷气罩或保护罩内,阻止喷嘴和工件接触,减少了“双弧”发生的趋势,保护气覆盖了切割区域,改进了切割质量和切割速度,还能冷却喷嘴和护罩。空气等离子切割是在20世纪60年代早期引入用于切割碳钢的。空气中的氧气与熔化钢板的放热反应可以提供额外的能量。
20世纪70、80年代氧气等离子切割
20世纪70年代早期,发现了一种工业可利用的铪和锆,它能抗拒在氧气等离子弧切割中因高温而导致的电极材料快速烧损。氧气作为一种等离子气体引起了人们极大兴趣。之后氧气作为等离子气体成为可能,氧气等离子应用于碳钢切割成为等离子弧切割技术的最新发展。氧气等离子切割满足了大范围、无挂渣、高切割速度切割所需要的条件,在较低电流水平操作时,大幅提高切割速度,并且产生光滑、方正和更柔软的切口边缘。这种切口边缘更容易进行弯曲或焊接加工。所有钢板,包括高硬度低合金钢在内,用这种新技术都可以实现基本无挂渣切割。
现代高精度等离子切割及其智能化发展
20世纪90年代初,“精细等离子”概念进入市场,首次挑战了激光市场。激光切割因其具有在保护准确的精度的同时产生高质量切口的能力,在金属切割工业是等离子切割的一个重要的竞争对手。等离子设备的制造商们加大了其在设计方面的努力,以求进一步提高其设备的切割质量。通过极大地缩小喷嘴孔尺寸而产生极度压缩弧,等离子切割获得了与激光产品竞争所需的高能量密度。精细等离子系统已经成为金属切割工业中与激光相竞争的先进的等离子产品。
切割设备等离子切割系统主要由供气装置水装置、电源以及割枪几部分组成。水冷枪还需有冷却循环水装置。
(1)供气装置 空气等离子弧切割的供气装置的主要设备是一台大于l.5kw的空气压缩机,切割时所需气体压力为0.3-0.6MPa。如选用其他气体,可采用瓶装气体经减压后供切割时使用。
(2)电源 等离子切割采用具有陡降或恒流外特性的直流电源。为获得满意的引弧及稳弧效果,电源空载电压一般为电弧电压的两倍。常用切割电源空载电压为350-400V。
(3)割枪 割枪的具体形式取决于割枪的电流等级,一般60A以下割枪多采用风冷结构;而60A以上割枪多采用水冷结构。割枪中的电极可采用纯钨、钍钨、钟钨棒,也可采用镶嵌式电极。电极材料优先选用铸钨。
等离子切割具有切割厚度大、切割灵活、装夹工件简单及可以切割曲线等优点,可以广泛应用于所有的金属材料和非金屑材料的切割。
切割方法等离子切割方法除一般形式外,派生出的形式还有水压缩等离子切割等。最常用的方法是一般等离子切割和空气等离子切割。
一般切割一般的等离子切割不用保护气,工作气体和切割气体从同一喷嘴内喷出。引弧时,喷出小气流离子气体作为电离介质;切割时,则同时喷出大气流气体以排除熔化金属。
空气切割空气等离子切割一般使用压缩空气作为离子气,这种方法切割成本低,气源来源方便。压缩空气在电弧中加热、分解和电离,生成的氧气切割金属产生化学放热反应,加快切割速度。充分电离了的空气等离子体的热焓值高,因而电弧的能量大,切割速度快。
工作气体等离子切割发展到当前,可采用的工作气体(工作气体是等离子弧的导电介质,又是携热体,同时还要排除切口中的熔融金属)对等离子弧的切割特性以及切割质量、速度都有明显的影响。常用的等离子弧工作气体有氩、氢、氮、氧、空气、水蒸气以及某些混合气体。
切割规范各种等离子弧切割工艺参数,直接影响切割过程的稳定性、切割质量和效果。主要切割规范简述如下:
空载电压和弧柱电压等离子切割电源,必须具有足够高的空载电压,才能容易引弧和使等离子弧稳定燃烧。空载电压一般为120-600V,而弧柱电压一般为空载电压的一半。提高弧柱电压,能明显地增加等离子弧的功率,因而能提高切割速度和切割更大厚度的金属板材。弧柱电压往往通过调节气体流量和加大电极内缩量来达到,但弧柱电压不能超过空载电压的65%,否则会使等离子弧不稳定。
切割电流增加切割电流同样能提高等离子弧的功率,但它受到最大允许电流的限制,否则会使等离子弧柱变粗、割缝宽度增加、电极寿命下降。
气体流量增加气体流量既能提高弧柱电压,又能增强对弧柱的压缩作用而使等离子弧能量更加集中、喷射力更强,因而可提高切割速度和质量。但气体流量过大,反而会使弧柱变短,损失热量增加,使切割能力减弱,直至使切割过程不能正常进行。
电极内缩量所谓内缩量是指电极到割嘴端面的距离,合适的距离可以使电弧在割嘴内得到良好的压缩,获得能量集中、温度高的等离子弧而进行有效的切割。距离过大或过小,会使电极严重烧损、割嘴烧坏和切割能力下降。内缩量一般取8-11mm。
割嘴高度割嘴高度是指割嘴端面至被割工件表面的距离。该距离一般为4~10mm。它与电极内缩量一样,距离要合适才能充分发挥等离子弧的切割效率,否则会使切割效率和切割质量下降或使割嘴烧坏。
切割速度以上各种因素直接影响等离子弧的压缩效应,也就是影响等离子弧的温度和能量密度,而等离子弧的高温、高能量决定着切割速度,所以以上的各种因素均与切割速度有关。在保证切割质量的前提下,应尽可能的提高切割速度。这不仅提高生产率,而且能减少被割零件的变形量和割缝区的热影响区域。若切割速度不合适,其效果相反,而且会使粘渣增加,切割质量下降。
安全防护1. 等离子切割下部应设置水槽,在切割过程中切割部分应放在水下切割,避免产生烟气对人体的毒害
2.在等离子弧切割过程中避免直接目视等离子弧,需佩戴专业防护眼镜及面部罩,避免弧光对眼睛及皮肤的灼伤。
3.在等离子弧切割过程中会产生大量毒害气体,需要通风并佩戴多层过滤的防尘口罩。
4.在等离子弧切割过程中需佩戴毛巾,手套,脚护套等劳护用具,防止四溅的火星对皮肤的灼伤。
5.在等离子弧切割过程中高频振荡器产生的高频以及电磁辐射,会对身体造成损伤,部分长期从业者甚至出现不孕的症状,虽然医学界和业界暂时尚无定论,但仍需做好防护工作。