版权归原作者所有,如有侵权,请联系我们

[科普中国]-光催化原理

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

光催化原理是基于光催化剂在光照的条件下具有的氧化还原能力,从而可以达到净化污染物、物质合成和转化等目的。通常情况下,光催化氧化反应以半导体为催化剂,以光为能量,将有机物降解为二氧化碳和水。因此光催化技术作为一种高效、安全的环境友好型环境净化技术,对室内空气质量的改善已得到国际学术界的认可。1

发展历程光催化是藤岛昭教授在1967年的一次试验中,对放入水中的氧化钛单晶进行紫外灯照射,结果发现水被分解成了氧和氢而发现的。通俗意义上讲触媒就是催化剂的意思,光触媒顾名思义就是光催化剂。催化剂是加速化学反应的化学物质,其本身并不参与反应。光催化剂就是在光子的激发下能够起到催化作用的化学物质的统称。

光催化剂的种类其实很多,包括二氧化钛,氧化锌,氧化锡,二氧化锆,硫化镉等多种氧化物硫化物半导体,另外还有部分银盐,卟啉一等也有催化效应,但他们基本都有一个缺点-----存在损耗,即反应前和反应后其本身会出现消耗,而且它们大部分对人体都有一定的毒性。所以,21世纪所知的最有应用价值的光催化材料,就是二氧化钛。2

如何解释光催化这个反应呢,其实,从宏观看,可以把它理解成光合作用的逆反应。

众所周知,最初的地球环境不适合生物生存,后来光合细菌和植物开始用光合作用,用叶绿素作为催化剂,将无机物转化为有机物,它们花了近30亿年才结束了地球的恶劣环境,创造了地球生物发展的温床。而我们的光催化反应则将这个反应反过来了,即催化剂在光的作用下,将有机物转化成了无机物,这对补完自然界的物质循环过程具有巨大的意义。

那么,光催化的微观反应是什么样的呢?通俗的说,二氧化钛粒子本身是很稳定的存在,但是它吸收了紫外光的能量以后,就开始变得“兴奋”起来,把自己身上的电子到处乱扔,于是,它抛出的电子和自身空出的“电位”就变成了撕扯有机物大分子的“刀”,而当能量减弱以后,二氧化钛粒子就需要“歇会”了,它扔出去的电子也全部跑了回来,和空出的电位结合,于是,二氧化钛粒子在不消耗自己的情况下,将有机物降解了,这个过程很复杂,但最终的产物是二氧化碳和水。

原理介绍光催化的原理是利用光来激发二氧化钛等化合物半导体,利用它们产生的电子和空穴来参加氧化—还原反应。 当能量大于或等于能隙的光照射到半导体纳米粒子上时,其价带中的电子将被激发跃迁到导带,在价带上留下相对稳定的空穴,从而形成电子—空穴对。由于纳米材料中存在大量的缺陷和悬键,这些缺陷和悬键能俘获电子或空穴并阻止电子和空穴的重新复合。这些被俘获的电子和空穴分别扩散到微粒的表面,从而产生了强烈的氧化还原势。3

相关概念导带导带(conduction band)是由自由电子形成的能量空间。即固体结构内自由运动的电子所具有的能量范围。导带是半导体最外面(能量最高)的一个能带,是由许多准连续的能级组成的;是半导体的一种载流子——自由电子(简称为电子)所处的能量范围。

价带价带(valence band)或称价电带,通常是指半导体或绝缘体中,在0K时能被电子占满的最高能带。对半导体而言,此能带中的能级基本上是连续的。全充满的能带中的电子不能在固体中自由运动。

禁带在能带结构中能态密度为零的能量区间。常用来表示价带和导带之间的能态密度为零的能量区间。禁带宽度的大小决定了材料是具有半导体性质还是具有绝缘体性质。半导体的禁带宽度较小,当温度升高时,电子可以被激发传到导带,从而使材料具有导电性。

能隙能隙(Bandgap energy gap)或译作能带隙,在固态物理学中泛指半导体或是绝缘体的价带(valence band)顶端至导带(conduction band)底端的能量差距。

优点操作简单、能耗低、无二次污染、效率高。

1.直接用空气中的氧气做氧化剂,反应条件温和(常温 常压) 2.可以将有机污染物分解为二氧化碳和水等无机小分子,净化效果彻底。 3.半导体光催化剂化学性质稳定,氧化还原性强,成本低,不存在吸附饱和现象,使用寿命长。

光催化净化技术具有室温深度氧,二次污染小,运行成本低和可望利用太阳光为反应光源等优点,所以光催化特别合适室内挥发有机物的净化,在深度净化方面显示出了巨大的应用潜力。 常见的光催化剂多为金属氧化物和硫化物,其中二氧化钛的综合性能最好,应用最广。自1972年Fujishima和Honda发现在受辐照的二氧化钛上可以持续发生水的氧化还原反应,并产生氢气以来,人们对这一催化反应过程进行了大量研究。

结果表明,二氧化钛具有良好的抗光腐蚀性和催化活性,而且性能稳定,价廉易得,无毒无害,是目前公认的最佳光催化剂。该项技术不仅在废水净化处理方面具有巨大潜力,在空气净化方面同样具有广阔的应用前景。

缺点限制光催化应用的原因:

1.光腐蚀

2.光催化剂本身的吸光率和评价中使用光源的波长与强度

3.光催化反应中电子空穴再结合的防止

4.氧化反应开始后的后续反应难以控制

5.比表面积不足4

通俗的说,光催化剂分解有机物没有选择性,所以,负载催化剂的材料本身也会遭到分解,一旦催化粒子脱落,材料就失效了;第二,催化剂粒子的团聚现象比较严重,导致比表面积太小,催化效果太弱,而由此又导致氧化反应不彻底,反而容易产生其他有害物质。第三,光催化反应对光源的选择性很强,只能在紫外光作用下反应,这也在一定程度上限制了催化效率。

本词条内容贡献者为:

侯传涛 - 副教授 - 青岛大学