三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。
定义式
|| ||
表格参考资料来源:现代汉语词典1.
函数关系倒数关系:①;②;③
商数关系:①;②.
平方关系:①②;③
诱导公式**公式一:**设为任意角,终边相同的角的同一三角函数的值相等:
**公式二:**设为任意角,与的三角函数值之间的关系:
**公式三:**任意角与的三角函数值之间的关系:
公式四:与的三角函数值之间的关系:
公式五:与的三角函数值之间的关系:
公式六:及与的三角函数值之间的关系:
记背诀窍:奇变偶不变,符号看象限2.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。
诱导公式口诀“奇变偶不变,符号看象限”意义:
k×π/2±a(k∈z)的三角函数值
(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;
(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。
记忆方法一:奇变偶不变,符号看象限:
记忆方法二:无论α是多大的角,都将α看成锐角.
以诱导公式二为例:
若将α看成锐角(终边在第一象限),则π+α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值。这样,就得到了诱导公式二。
以诱导公式四为例:
若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值。这样,就得到了诱导公式四。
诱导公式的应用:
运用诱导公式转化三角函数的一般步骤:
特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。
基本公式和差角公式二角和差公式
证明如图:负号的情况只需要用-β代替β即可.cot(α+β)推导只需把角α对边设为1,过程与tan(α+β)相同.
三角和公式
和差化积公式
口诀:正加正,正在前,余加余,余并肩,正减正,余在前,余减余,负正弦.
积化和差公式
倍角公式二倍角公式
三倍角公式
证明:
sin3****a
=sin(a+2a)
=sin2a·cosa+cos2a·sina
=2sina(1-sin2a)+(1-2sin2a)sina
=3sina-4sin3a
cos3a
=cos(2a+a)
=cos2acosa-sin2asina
=(2cos2a-1)cosa-2(1-cos2a)cosa
=4cos3a-3cosa
sin3****a
=3sina-4sin3a
=4sina(3/4-sin2a)
=4sina(sin60°+sina)(sin60°-sina)
=4sina×2sin[(60+a)/2]cos[(60°-a)/2]×2sin[(60°-a)/2]cos[60°+a)/2]
=4sinasin(60°+a)sin(60°-a)
cos3a
=4cos3a-3cosa
=4cosa(cos2a-3/4)
=4cosa(cosa-cos30°)(cosa+cos30°)
=4cosa×2cos[(a+30°)/2]cos[(a-30°)/2]×{-2sin[(a+30°)/2]sin[(a-30°)/2]}
=-4cosasin(a+30°)sin(a-30°)
=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
=-4cosacos(60°-a)[-cos(60°+a)]
=4cosacos(60°-a)cos(60°+a)
上述两式相比可得:
tan3a=tana·tan(60°-a)·tan(60°+a)
四倍角公式
sin4a=-4×[cosa·sina·(2×sin2a-1)]
cos4a=8cos4a-8cos2a+1
tan4a=(4tana-4tan3a)/(1-6tan2a+tan4a)3
五倍角公式
n****倍角公式
应用欧拉公式:.
上式用于求n倍角的三角函数时,可变形为:
所以
其中,Re表示取实数部分,Im表示取虚数部分.而
所以
半角公式
(正负由所在的象限决定)
万能公式
辅助角公式
证明:
由于,显然,且
故有:
其它公式正弦定理
详见词条:正弦定理
在任意△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R.则有4:
正弦定理变形可得:
余弦定理详见词条:余弦定理
对于如图所示的边长为a、b、c而相应角为α、β、γ的△ABC,有:
也可表示为:
降幂公式sin²α=[1-cos(2α)]/2
cos²α=[1+cos(2α)]/2
tan²α=[1-cos(2α)]/[1+cos(2α)]
幂级数c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)
c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)
它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,...cn...及a都是常数, 这种级数称为幂级数。
泰勒展开式泰勒展开式又叫幂级数展开法
实用幂级数:
ex= 1+x+x2/2!+x3/3!+…+xn/n!+…,x∈R
ln(1+x)=x-x2/2+x3/3-…+(-1)k-1xk/k, x∈(-1,1)
sin x = x-x3/3!+x/5!-…+(-1)k-1x2k-1/(2k-1)!+…, x∈R
cos x = 1-x2/2!+x/4!-…+(-1)kx2k/(2k)!+…, x∈R
arcsin x = x + x3/(2×3) + (1×3)x/(2×4×5) + (1×3×5)x/(2×4×6×7)…+(2k+1)!!×x2k+1/(2k!!×(2k+1))+…, x∈(-1,1)(!!表示双阶乘)
arccos x = π/2 -[x + x3/(2×3) + (1×3)x/(2×4×5) + (1×3×5)x/(2×4×6×7)……], x∈(-1,1)
arctan x = x - x3/3 + x/5 -…, x∈(-∞,1)
sinh x = x+x3/3!+x/5!+…+x2k-1/(2k-1)!+…, x∈R
cosh x = 1+x2/2!+x/4!+…+x2k/(2k)!+…, x∈R
arcsinh x =x - x3/(2×3) + (1×3)x/(2×4×5) -(1×3×5)x/(2×4×6×7)…, x∈(-1,1)
arctanh x = x + x3/3 + x/5 + …, x∈(-1,1)
在解初等三角函数时,只需记住公式便可轻松作答,在竞赛中,往往会用到与图像结合的方法求三角函数值、三角函数不等式、面积等等。
万能公式tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)÷(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
傅里叶级数傅里叶级数又称三角级数
f(x)=a0/2+∑(n=0..∞) (ancosnx+bnsinnx)
a0=1/π∫(π..-π) (f(x))dx
an=1/π∫(π..-π) (f(x)cosnx)dx
bn=1/π∫(π..-π) (f(x)sinnx)dx
本词条内容贡献者为:
郎奠波 - 副教授 - 黑龙江财经学院