概述
在产品设计过程中,为消除产品的潜在缺陷和薄弱环节,防止故障发生,以确保满足规定的固有可靠性要求所采取的技术活动。可靠性设计是可靠性工程的重要组成部分,是实现产品固有可靠性要求的最关键的环节,是在可靠性分析的基础上通过制定和贯彻可靠性设计准则来实现的。
在产品研制过程中,常用的可靠性设计原则和方法有:元器件选择和控制、热设计、简化设计、降额设计、冗余和容错设计、环境防护设计、健壮设计和人为因素设计等。除了元器件选择和控制、热设计主要用于电子产品的可靠性设计外,其余的设计原则及方法均适用于电子产品和机械产品的可靠性设计。
系统的可靠性设计是指在遵循系统工程规范的基础上,在系统设计过程中,采用一些专门技术,将可靠性"设计"到系统中,以满足系统可靠性的要求。它是根据需要和可能,在事先就考虑产品可靠性诸因素基础上的一种设计方法。系统可靠性设计技术是指那些适用于系统设计阶段,以保证和提高系统可靠性为目的的设计技术和措施。它是提高系统可靠性的行之有效的方法。
重要性可靠性设计是系统总体工程设计的重要组成部分,是为了保证系统的可靠性而进行的一系列分析与设计技术。它是通过系统的电路设计与结构设计来实现的。
“产品的可靠性是设计出来的,生产出来的,管理出来的”,但实践证明,产品的可靠性首先是设计出来的。可靠性设计的优劣对产品的固有可靠性产生重大的影响。
产品设计一旦完成,并按设计预定的要求制造出来后,其固有可靠性就确定了。生产制造过程最多只能保证设计中形成的产品潜在可靠性得以实现,而在使用和维修过程中只能是尽量维持已获得的固有可靠性。所以,如果在设计阶段没有认真考虑产品的可靠性问题,造成产品结构设计不合理,电路设计不可行,材料、元器件选择不当,安全系数太低,检查维修不便等问题,在以后的各个阶段中,无论怎么认真制造,精心使用、加强管理也难以保证产品可靠性的要求。因此,我们说产品的可靠性首先是设计出来的,可靠性设计决定产品的“优生”,可靠性设计是可靠性工程的最重要的阶段。这是因为:
(1)设计规定了系统的固有可靠性。如果在系统设计阶段没有认真考虑其可靠性问题,如材料、元器件选择不当,安全系数太低,检查、调整、维修不便等,那么以后无论怎样注意制造、严格管理、精心使用,也难以保证产品的可靠性要求。
(2)现代科学技术的迅速发展,使同类产品之间的竞争加剧。由于现代科学技术的迅速发展,产品更新换代很快,这就要求企业不断引进新技术,开发新产品,而且新产品研制周期要短。实践告诉我们,如果在产品的设计过程中,仅凭经验办事,不注意产品的性能要求,或者没有对产品的设计方案进行严格的、科学的论证,产品的可靠性将无法保证。往往等到试制、试用后才发现产品存在质量问题,只得再做改进设计,这就使产品研制周期加长,推迟了产品投入市场的周期,降低了竞争能力。在产品的全寿命周期中,只有在设计阶段采取措施,提高产品的可靠性,才会使企业在激烈的市场竞争中取胜,提高企业的经济效益。
(3)在设计阶段采取措施,提高产品的可靠性,耗资最少,效果最佳。
此外,我国开展可靠性工作的经验证明,在产品的整个寿命周期内,对可靠性其重要影响的是设计阶段,见图。
综上所述,可靠性设计在总体过程设计中占有十分重要的位置,必须把可靠性工程的重点放在设计阶段,并遵循预防为主,早期投入,从头抓起的方针,并以开始研制起,就要进行产品的可靠性设计,尽可能把不可靠的因素消除在产品设计过程的早期。
具体内容1.设计的目的和任务可靠性设计的目的是在综合考虑产品的性能、可靠性、费用和设计等因素的基础上,通过采用相应的可靠性设计技术,使产品的寿命周期内符合所规定的可靠性要求。
系统可靠性设计的主要任务是:通过设计,基本实现系统的固有可靠性。说“基本实现”是因为在以后的生产制造过程中还会影响产品固有可靠性。该固有可靠性是系统所能达到的可靠性上限。所有的其他因素(如维修性)只能保证系统的实际可靠性尽可能地接近固有可靠性。可靠性设计的任务就是实现产品可靠性设计的目的,预测和预防产品所有可能发生的故障。也就是挖掘和确保产品潜在的隐患和薄弱环节,通过设计预防和设计改进,有效地消除隐患和薄弱环节,从而使产品符合规定的可靠性要求。也可以说可靠性设计一般有两种情况:一种是按照给定的目标要求进行设计,通常用于新产品的研制和开发;另一种是对现有定型产品的薄弱环节,应用可靠性的设计方法加以改进、提高,达到可靠性增长的目的。
2.设计的基本原则在可靠性设计过程中应遵循以下原则:
(1)可靠性设计应有明确的可靠性指标和可靠性评估方案;
(2)可靠性设计必须贯穿于功能设计的各个环节,在满足基本功能的同时,要全面考虑影响可靠性的各种因素;
(3)应针对故障模式(即系统、部件、元器件故障或失效的表现形式)进行设计,最大限度地消除或控制产品在寿命周期内可能出现的故障(失效)模式;
(4)在设计时,应在继承以往成功经验的基础上,积极采用先进的设计原理和可靠性设计技术。但在采用新技术、新型元器件、新工艺、新材料之前,必须经过试验,并严格论证其对可靠性的影响;
(5)在进行产品可靠性的设计时,应对产品的性能、可靠性、费用、时间等各方面因素进行权衡,以便做出最佳设计方案。
3.可靠性要求可靠性要求是进行可靠性设计、分析、制造、试验、验收的依据。可靠性要求分为定量要求和定型要求两种。
(1)可靠性的定量要求 可靠性的定量要求是指选择和确定产品的可靠性参数、指标依据验证时机和验证方法,以便在设计、生产、试验验证和使用过程中用量化的方法来评估或验证产品的可靠性水平。可靠性的定量要求是影响产品可靠性的关键因素。科学合理的提出可靠性定量要求是保证产品可靠性的必要条件,必须合理明确的确定产品的故障判据,才能使可靠性定量要求得以正确实施。可靠性定量要求作为产品设计指标的重要组成部分,应在产品的研制任务书或技术经济合同中明确规定。
可靠性定量要求中的参数是描述系统可靠性的度量。一般可分为使用可靠性参数和合同可靠性参数。使用可靠性参数反映了使用方对可靠性、可信性、维修人力费用及故障资源费用方面的要求,一般不宜直接写进合同。合同可靠性参数是可以由承包商控制的,是用于产品设计的可靠性参数,有使用可靠性参数按一定规律转换来实现,经使用方和承制方双方协商纳入合同的可靠性参数。
可靠性指标是可靠性参数的量值。对于每一个适用的可靠性参数均应规定使用目标和门限值(Threshold)(使用值)。在合同中,使用目标值应转换成规定值(固有值),门限值应转换成最低可接受值(Minimum Acceptablc Value)(固有值)。
使用可靠性指标包括了设计、安装、质量、环境、使用、维修对产品的影响,而合同可靠性指标仅包括设计、制造的影响。所以,一般情况下同一产品的使用可靠性指标要低于合同可靠性指标。
对于合同中规定的定量要求,必须同时明确相应的验证要求。验证可以是试验验证、使用验证或综合评估。
(2)可靠性的定性要求 可靠性的定性要求是指用一种非量化的形式来设计、评价,以保证产品的可靠性。可靠性定性要求可分为设计要求和定性分析要求两种。
①定性设计要求:所谓定性设计是为满足产品的可靠性要求而完成的一组可靠性设计。主要的定性要求见表如下:
②定性分析要求;主要的定性分析要求见表:
可靠性指标是定量设计的尺度依据,建模、预计、分配等是可靠性定量设计的工具和手段;可靠性设计准则是定性设计的重要依据,故障模式及影响分析是有效的分析手段。在工程设计工作中,应正确地处理定量设计与定性设计的关系,定量设计应与定性设计有机地结合起来。
4.设计的主要内容可靠性设计是为了在设计过程中挖掘和确定隐患及薄弱环节,并采取设计预防和设计改进措施,有效地消除隐患及薄弱环节,定量计算和定性分析主要是评价产品现有的可靠性水平和确定薄弱环节,而要提高产品的固有可靠性,只能通过各种具体的可靠性设计来实现。
可靠性设计的主要内容概括起来可以有以下几个方面:
(1)建立可靠性模型,进行可靠性指标的预计和分配。要进行可靠性预计和分配,首先应建立产品的可靠性模型。而为了选择方案、预测产品的可靠性水平、找出薄弱环节,以及逐步合理地将可靠性指标分配到产品的各个层面上去,就应在产品的设计阶段,反复多次地进行可靠性指标的预计和分配。随着技术设计的不断深入和成熟,建模和可靠性指标分配、预计也应不断地修改和完善。
(2)进行各种可靠性分析。诸如故障模式影响和危机度分析、故障树分析、热分析、容差分析等。以发现和确定薄弱环节,在发现了隐患后通过改进设计,从而消除隐患和薄弱环节。
(3)采取各种有效的可靠性设计方法。如制定和贯彻可靠性设计准则、降额设计、冗余设计、简单设计、热设计、耐环境设计等,并把这些可靠性设计方法和产品的性能设计工作结合起来,减少产品故障的发生,最终实现可靠性的要求。
可靠度分配原则产品系统是由若干个零部件或子系统构成,因此,在进行可靠性设计时,当产品系统的可靠度目标一旦确定之后,就应该把它分配给产品系统的各组成单元,这项工作称为可靠度分配。产品可靠度目标值的分配应考虑以下原则1:
1、按重要程度分配可靠度。
2、按复杂程度分配可靠度。
3、按技术水平、任务情况等的综合指标分配可靠度。
4、按相对故障率分配可靠度。
各部分有了明确的可靠性指标后,根据不同计算准则,进行零件的设计计算。主要的计算方法为:根据载荷和强度的分布计算可靠度或所需尺寸;根据载荷和寿命的分布计算可靠度或安全寿命;求出可靠度与安全系数间的定量关系,沿用常规设计方法计算所需尺寸或验算安全系数。与可靠性设计有关的载荷、强度、尺寸和寿命等数据都是随机变量,必须用概率统计方法进行处理。
辅助措施为了使设计时能充分地预测和预防故障,把更多的失效经验设计到产品中,因而必须帮助设计人员掌握充分的故障情报资料和设计依据。采取以下措施:
(1)可靠性检查表,从可靠性观点出发,列出设计中应考虑的重点。设计时逐项检查。考虑预防的对策。
(2)推行FMEA,FTA方法。FMEA(失效模式影响分析)和FTA(故障树分析)是可靠性分析中的重要手段。FMEA是从零部故障模式入手分析,评定它对整机或系统发生故障的影响程度,以此确定关键的零件和故障模式。FTA则是从整机或系统故障开始,逐步分析到基本零件的失效原因。这两种方法在国外被看作是设计图纸一样重要,作为设计的技术标准资料,它收集总结了该种产品所有可能预料到的故障模式和原因。设计者可以较直观地看到设计中存在的问题。
(3)故障事例集。把过去技术上的失败和改进的事例作成手册,供设计者随进参考。通常用简图表示,将故障和改进作对比。对故障的原因、情况附有简单说明。这手册是各公司积累的技术财富,视同设计规范同等重要。
(4)数据库。广泛有效地收集设计、制造中的失败和改进经验,试验和实际用的数据形成检索系统和数据库,使设计者能超越本单位充分利用别人实践过的经验。如电子产品已形成世界性可靠性信息交换网。
(5)设计、试验规范的不断充实、改善。从使用实际得来的故障教训要反馈到设计、试验方法的改进中,要将这些改进效果作为产品设计规范(包括材料选定,结构形式,许用应力,安全系数值)和试验标准的改进依据,使它们成为设计技术的一部分。随着可靠性工作开展。必须加强设计、试验规范的研究,命名如试验规范的制定要以实地使用条件分析为基础,要调查出场的回收品和试验室加速试验件作对比,计算强化系数。通过失效分析反推,验证试验条件是否合适,从而不断改进试验方法和标准。因而这些规范都是公司的财富,对外不轻易泄密。如日本小松10年中试验标准增加三倍,丰田的试验标准有1500项之多。也可见各公司对试验的重视程度。
可靠性分析通过设计实现产品可靠性指标的方法。产品的可靠性是通过设计、生产和管理而实现的,而首先是产品的设计。它决定着产品的固有可靠性。电子产品可靠性设计技术包括许多内容,主要有可靠性分配、可靠性预测、冗余技术、漂移设计、故障树分析和故障模式、效应和致命度分析、元件器件的优选和筛选、应力-强度分析、降负荷使用、热设计、潜在通路分析、电磁兼容和设计评审等。
可靠性分配
根据用户对系统或设备提出的可靠性指标,对分系统、整机等组成部分提出相应的可靠性指标,逐级向下,直到元件、器件、工艺、材料等的可靠性指标。可靠性分配是系统或设备的总体部门的一项可靠性设计任务。
对于有L个组成成分的系统,最简单的情况是这些组成成分的可靠性是互相独立的。若第i组成分不可靠,则系统就不可靠,系统可靠性为q=q1q2…qL 〔若第i组成分的不可靠性为Pi=1-qi,则系统的不可靠性为P=1-q=1-(1-P1)(1-P2)…(1-PL)≈P1+P2+…+PL〕。这是系统可靠性分配的基本公式。可靠性分配本质上不是数学问题,而是人力、物力的统一调度和运用的工程管理问题。因为不同整机、元件、器件的现实可靠性水平是很不相同的,而把它们的可靠性提高到一定水平所需要的人力、物力和时间往往差别很大,因而不能采取均匀提高的纯数学方案。在实际工作中,需进行多个方案的协调、比较后才能决定。
可靠性预测
主要是根据电子元件、器件的故障和产品设计时所用的元件、器件数和使用条件,对产品的可靠性进行估计。最简单的情况是:产品由k种电子元件、器件组成,第i种元件、器件的寿命为指数分布,故障率为λi,用量为ni。任一元件和器件发生故障都会引起产品故障,故产品的故障率为λ=n1λ1+n2λ2+…+nkλk
这是在设计阶段根据元件、器件的故障率对产品故障率提出预测的基本公式。在实际使用时,还要增加一些修正和补充。元件、器件的故障率还会随环境和其他条件而发生变化。若实验室条件下的元件、器件的故障率,则在环境A下的故障率为
式中为元件、器件在环境A下的环境因子。在恶劣环境下,环境因子值可能很大。例如,导弹发射环境下的环境因子可能达到20~80。用预测公式测得的λ值还需要乘上一个修正因子(1+α)。对于比较成熟的设计,α可取10%左右;对不太成熟的设计,α可取30%以上。预测的故障率与实际投入使用后的现场故障率有一些差异是正常的。事实上,在设计阶段可靠性预测主要是相对可靠性,而不是绝对可靠性。
冗余技术
当产品设计中发现某个组成部分的可靠性过低,影响产品的总可靠性指标时,便采取所谓冗余技术来提高这一部分的可靠性。有k个组成部分的产品,各组成部分的可靠性是互相独立的。若其中一个部分出故障,产品就出故障,则这些组成部分构成一个可靠性串联系统。若产品的第i部分的可靠性为qi,则产品的可靠性q=q1q2…qk;若其中的一个部分不出故障,产品就能完成预定任务,则这些组成部分构成一个可靠性并联系统。这时,q=1-(1-q1)(1-q2)…(1-qi)。
如果k=2,q1=q2=0.99,则组成可靠性并联系统后,q=0.9999。即经可靠性并联后大大提高了可靠性。所谓“多数表决”冗余技术,是只要k个组成部分中多数不出故障,产品就能完成预定任务。一般说来,很少使用整机作为冗余的组成部分,通常是对整机的薄弱环节进行冗余处理。
漂移设计
元件、器件的性能参数容许有一定的散布。其上限为上公差,下限为下公差。随着出厂时间的增加,性能参数产生漂移。温度和其他环境条件的变化也会造成参数漂移。只要元件、器件的漂移不超过公差的上、下限,就是合格的。电路的设计应该是,只要所用的元件、器件性能参数在规定的容许上、下限以内,电路的性能参数就应该是合格的,即使元件、器件的参数值到了规定容许的上、下限的边缘,也应如此,这称为电路的漂移设计。在满足元件、器件规定容许的上、下限前提下,在理论分析上,元件、器件有一些最坏组合,使电路的性能参数产生最大的偏离。如果这些最坏组合产生的电路仍能满足要求,则电路就满足漂移设计要求,这也可以通过最坏组合的实际电路加以验证,称漂移试验。但是,最坏组合方法往往偏于过分保守。如果能知道元件、器件性能参数的概率分布,则可以分析出电路性能参数的概率分布,从而作漂移分析和漂移试验,这称为概率法。这往往比最坏组合法更符合实际情况。
故障树分析
1975年在美国Berkeley的加利福尼亚大学召开了一次盛况空前的可靠性学术会议。会议上把故障树分析技术和可靠性理论并列为两大进展,认为后者主要是数学家和概率论统计学家推动发展起来的,而前者则是工程师们推动发展起来的,两者的侧重点不同但是实质一样的。
故障树分析是美国贝尔实验室1961年发明的一种系统分析方法。其优点是较易处理复杂系统,容易发现可能导致系统出现故障的情况,有利于消除潜在故障。在设计阶段,它有助于发现系统的薄弱环节,是改进和提高设计可靠性的有力工具。故障树是一种树状的逻辑因果关系图,它利用一系列符号和逻辑门来描述各种事件之间的因果关系,使人们对这些关系一目了然。例如,基本事件的符号为○、结果事件的符号为嘑。逻辑门的输入事件为因,输出事件为果。以某房间照明系统为例,其原理和故障树如图。故障树的定量分析是根据基本事件出现的概率,计算出系统不希望发生的故障事件的出现概率,定量地计算出系统薄弱环节的不可靠性,找出对系统可靠性有关键作用的元件、部件,通常是从求最小割集着手。一个最小割集包括若干个基本事件。如果这些基本事件都出现,系统就出故障。只要其中有一个不出现,割集中的其他基本事件都出现也不会使系统出故障。寻找所有最小割集的方法很多,但都未彻底解决工作量随基本事件数的增加而指数增大这一困难。一个系统的故障树是一本很好的故障维修指南。它能使维修人员迅速发现故障,进而迅速排除故障。
故障模式、效应、致命度分析
这种分析方法是将系统分成若干个组成部分。如果发生故障,分析它属于哪种故障模式(不必一定查清故障的确切原因);分析各组成部分可能出现的故障模式对系统有什么影响;对各种故障模式的影响进行半定性半定量的评价,对那些具有致命性影响的故障模式制定适当的解决措施或改进设计方案。这种分析方法是由系统的基本故障事件上推到系统故障,而傅里叶变换则是由系统故障下推到基本故障事件。两者结合起来,相辅相成,可以在设计阶段找出潜在的可靠性问题。
元件、器件的可靠性
可靠性质量保证体系的元件、器件的可靠性部门,通过调查研究制订出本部门的元件、器件优选目录,尽量压缩元件、器件的品种、规格和生产厂点。设计人员不得选用目录以外的元件、器件。如果设计人员认为必须选用目录外的元件、器件,则应经过元件、器件可靠性部门调查试验认为可用后,再正式补入目录,以备选用。元件、器件可靠性部门与生产厂保持密切的联系,监督元件、器件生产质量的一致性和稳定性。必要时,派出专人监督本部门定购批次的生产。不论对元件、器件的生产过程如何严格控制,材料、工艺、生产环境等并不能绝对一致。因此,不可避免地有一部分产品会存在一些潜在的缺陷和弱点。这些有缺陷和弱点的电子元件、器件的平均寿命比正常产品的平均寿命短得多,使电子元件、器件的早期故障率较高。如果对电子元件、器件不加处理就装入整机,便会使整机的早期故障率大大增加。因此,在把电子元件、器件装入整机前,应采取施加强应力或其他手段,尽可能地剔除这种早期故障的产品。这就是电子元件、器件的可靠性筛选。筛选所加的强应力,可以是电的、热的、机械的或综合的。筛选项目须根据元件、器件的主要故障模式和故障机理,结合元件、器件的工艺设计、结构材料以及质量控制的情况而定。筛选不是提高产品的可靠性,它只能排除早期故障产品,使产品恢复其固有可靠性,但不能提高固有可靠性。如果元件、器件的筛选淘汰率较高,则说明设计、工艺或生产管理上存在较多问题,不易筛选彻底。这样的元件和器件不宜用于高可靠性要求的部位。元件、器件可靠性部门应根据本部门的需要制订元件、器件筛选条例,并规定出容许的筛选淘汰率。在一般情况下,元件、器件出厂越久,可靠性也就越低。因此,元件、器件可靠性部门应在调查研究和进行必要的试验后,制定元件、器件保管和保管年限条例。
应力—强度分析
概率设计所依据的模型主要是应力一强度干涉模型。当应力超过强度时就会发生失效。机械产品的“可靠度”实际上就是零件在给定的运行条件下抵抗失效的能力,也就是“应力”与“强度”相互作用的结果,或者说是“应力”与“强度”干涉的结果2。
产品所受的应力x是广义的,它不仅包括张力、扭力矩等,还包括如温度、真空度等因素。产品的强度Y也是广义的。若Z=Y-X,当Zs)=P[(r—s)>0]。
热设计
使电子元件、器件在较低温度下工作有三个好处:①参数漂移较小,电气性能容易稳定;②故障率较低;③机械应力较小,金属化接点等的蜕化较慢,寿命较长。因此,需要根据热量传播的规律,研究作为热源的元件、器件的合理布局;采取什么降温措施可使设备的局部温升不会过高,以保证设备的可靠性。这称为热设计。在简单的情况下可利用自然冷却,但能力有限。当功率密集度较大时,应采取强迫通风冷却和水冷等措施。
潜在通路分析
潜在通路会在所有元件、器件工作正常的情况下导致出现不需要的功能,或使需要的功能受到抑制。潜在通路分析一般在设计阶段后期或设计文件完成之后进行。
设计评审
在设计的每一阶段结束之前,由负责设计的部门组织有关专家对设计文件从保证可靠性要求的各种角度和各个方面进行评定和审查。实际上,这是一种组织专家协助做好可靠性设计的一种技术评定会。由于可靠性设计牵涉的面太广,凭设计人员个人的知识进行最佳的可靠性设计已不可能。因此,设计评审是一种有效的提高可靠性的补救办法。