版权归原作者所有,如有侵权,请联系我们

科学岛团队在体心立方FeGa单晶Zener弛豫研究方面取得新进展

安徽省科学技术协会

近期,中国科学院合肥物质院固体所在体心立方 (BCC) FeGa单晶 Zener弛豫研究方面取得新进展。相关成果发表在金属材料顶级期刊 Acta Materialia 上。
FeGa合金由于具有驱动磁场低、磁致伸缩系数高、阻尼温域宽、微振动响应敏感、以及力学性能优良等特点,在制动器、传感器以及微振动抑制领域具有巨大的应用潜力。然而,FeGa合金的磁致伸缩和阻尼性能与Ga原子占位密切相关,如何鉴别和评估材料内部的Ga原子占位成为目前FeGa合金研究面临的关键难题。内耗技术对材料内部缺陷弛豫极为灵敏,因而,通过内耗技术有望解决评估Ga原子占位这一难题,并为FeGa合金磁致伸缩和阻尼性能提升提供指导。

鉴于此,研究团队在成功生长大尺寸FeGa单晶的基础上,制备了具有不同取向因子的FeGa二元单晶合金。通过对比研究FeGa多晶和单晶的内耗行为,确定了450℃附近的弛豫峰属于晶粒内部的Zener弛豫行为而非晶界弛豫;通过测量和分析不同取向FeGa单晶的内耗数据,发现随着单晶取向因子的增加,Zener弛豫净峰高逐渐增加(图1)。

研究团队进一步对具有不同原子对构型BCC晶胞的弛豫强度进行系统分析,发现FeGa单晶的三方和正交构型偶极子的弛豫强度随取向因子的增加而降低,仅四方偶极子的弛豫强度随着取向因子的增加而增加。应变张量分析及拟合结果表明,BCC结构FeGa单晶Zener弛豫主要来自于第二近邻溶质原子对的贡献,第一近邻溶质原子对对Zener弛豫的贡献仅占次要位置。同时,对于Fe-17at.% Ga单晶,其弛豫激活能约为1.8 eV,远低于多晶材料中通过内耗测得的激活能(图2),且该值与示踪法测得激活能大小相当,表明该值更接近于实际Ga原子的扩散激活能。此外,结合电子结构以及应变分析,阐明了Zener弛豫强度与磁致伸缩系数的正相关关系(图3)。

该工作明确地揭示出体心立方结构FeGa单晶Zener弛豫来主要自于第二近邻溶质原子对,纠正了长期以来对BCC合金中Zener弛豫来自于第一近邻溶质原子对的认知,该结论同样适用于其他BCC固溶体合金。同时,该工作表明Zener实验可用于分析单组元或多组元合金中是否存在微区溶质短程有序、溶质原子的有序程度、以及溶质原子占位等。这些分析将有助于研究材料的微观结构和动力学信息,并探究弹性偶极子对材料力学和功能特性的影响。


图 1. (a) 不同取向 Fe-17at.%Ga 单晶的净 Zener 弛豫内耗峰; (b) 净弛豫强度随取向因子的变化关系。

图2. (a)Fe-17at.%Ga 单晶的 Zener 弛豫激活能随取向因子变化关系; (b)FeGa 单晶与不同 BCC 结构 Fe 基合金 Zener 弛豫参数对比图。

图 3. FeGa 合金中磁致伸缩系数和 Zener 弛豫强度 的比较图。在有序和无序相区,磁致伸缩系数和 Zener 弛豫强度随 Ga 含量变化具有高度一致性。

评论
乌兰托娅
大学士级
2023-10-04