11日,中国科学技术大学的中国科学院量子信息与量子科技创新研究院潘建伟、陆朝阳、刘乃乐等组成的研究团队,与中国科学院上海微系统所、国家并行计算机工程技术研究中心合作,成功构建了255个光子的量子计算原型机“九章三号”,再度刷新了光量子信息的技术水平和量子计算优越性的世界纪录。
科研人员设计了时空解复用的光子探测新方法,构建了高保真度的准光子数可分辨探测器,提升了光子操纵水平和量子计算复杂度。根据公开正式发表的最优经典精确采样算法,“九章三号”处理高斯玻色取样的速度比上一代“九章二号”提升一百万倍。“九章三号”在百万分之一秒时间内所处理的最高复杂度的样本,需要当前最强的超级计算机“前沿”(Frontier)花费超过二百亿年的时间。这一成果进一步巩固了我国在光量子计算领域的国际领先地位。
在构建“九章”系列光量子计算原型机的基础上,中国科大研究团队揭示了高斯玻色取样和图论之间的数学联系,完成对稠密子图和Max-Haf两类具有实用价值的图论问题的求解,相比经典计算机精确模拟的速度快1.8亿倍。此外,还在国际上首次演示了无条件的多光子量子精密测量优势。
从76个光子,到113个光子,再到255个光子
量子计算机在原理上可通过特定算法在一些具有重大社会和经济价值的问题方面,获得比经典计算机更强的算力。早在1981年,费曼就提出了量子计算的初步想法。大规模量子计算机的物理实现是世界科技前沿的重大挑战之一。对于研制容错的通用量子计算,因其苛刻的容错阈值和大尺度的量子比特数目,离目前人类的科技发展水平尚有不小的差距。
因此,实现对于量子计算的物理实现,国际学术界采取三步走的路线图。其中,第一个里程碑,在学术上被称为“量子计算优越性”,其含义是通过高精度地操纵近百个物理比特,用来高效地解决超级计算机都无法在合理时间内解决的特定的高复杂度数学问题,从实验上确凿地证明四十年前费曼所提出来地量子计算加速设想,并驳斥“扩展丘奇—图灵论题”。
基于光子的玻色取样和基于超导比特的随机线路取样是实验展示量子计算优越性的两个重要方案。潘建伟团队一直在光量子信息处理方面处于国际领先水平。2017年,该团队构建了世界首台超越早期经典计算机的光量子计算原型机。2019年,团队进一步研制了确定性偏振、高纯度、高全同性和高效率的国际最高性能单光子源,实现了20光子输入60模式干涉线路的玻色取样,输出希尔伯特态空间维度达到1014,逼近了“量子计算优越性”。
2020年,潘建伟团队成功构建了76个光子100个模式的高斯玻色取样量子计算原型机“九章”,输出量子态空间规模达到了1030,处理高斯玻色取样的速度比超级计算机快一百万亿倍,同时克服了谷歌基于“悬铃木”超导处理器的随机线路取样实验中量子优越性依赖于样本数量的漏洞。
2021年,中国科学技术大学潘建伟、陆朝阳、刘乃乐等组成的研究团队与中科院上海微系统所、国家并行计算机工程技术研究中心合作,发展了量子光源受激放大的理论和实验方法,构建了113个光子144模式的量子计算原型机“九章二号”,并实现了相位可编程功能,完成了对用于演示“量子计算优越性”的高斯玻色取样任务的快速求解。“九章二号”处理高斯玻色取样的速度比当时最快的超级计算机快10的24次方倍。
光量子到底是什么?
光量子又称为光子。这个名词是爱因斯坦1905年在公开发表的一篇著名论文中首先提出的,由于光子学说的巨大成功,爱因斯坦获1921年诺贝尔物理学奖。
那么,究竟什么是光量子呢?在日常生活中,光是最为人们所熟悉的东西。如果没有光,人们简直无法生活。但是,人们认识光的本性却经过了艰难而又曲折的道路。
以牛顿为代表的一种理论认为,物体发光是因为它发射出光的粒子(微粒)流,我们之所以能看到光,是由于这些粒子落到眼睛上引起了视觉。按照这个理论,人们把光的反射现象解释为光的粒子在反射面上发生了弹性碰撞而造成的结果。
然而与牛顿同时代的惠更斯则认为,物体发出的光是一种波动,这种波动不同于人们通常观察到的水波和声波——它们都有传播波动的介质,水波的传播介质是水,声波的传播介质是空气或其他液体和固体,而光波的传播是在真空中进行的,也就是说光波以真空为介质。
这两种理论一开始就发生了冲突,但由于牛顿在科学界的崇高威望,光的微粒说在很长一段时间内占统治地位。直到19世纪初,杨氏、菲涅尔、夫琅和费新发现的光的干涉、衍射和偏振现象,与惠更斯的光的波动说十分吻合,而牛顿的光的微粒说对此却无法做出解释。
随着光学仪器的发展,光学理论也有了很大的进展。麦克斯韦证明了光波是一种电磁波后,光的波动理论似乎完全被实验所证实,光是波动的说法也为人们普遍接受。
但是,光是波动的理论在光电效应的实验结果面前却一直显得无能为力。所谓光电效应指的是:当用光照射金属表面时,会把电子从金属中打出来。早在1872年,莫斯科大学的斯托列托夫就已发现了这个现象,以后德国物理学家赫兹和雷纳德对此也进行了研究。当人们试图用光的波动说去解释光电效应时,得出的结论是:当光的强度增大时,从金属中被打出来的电子的速度也应增大。而实验结果表明,用同一频率的光照射时,不论光的强度多大,所有观察到的电子都具有同样的速度,也就是说,从金属中被打出来的电子的速度与光的强度无关!而且当光的频率达到某个极限值时,才会在光照条件下使电子从金属中飞出。而且,从金属中能不能打出电子与光的频率有关,即用紫光照射时飞出电子的速度比用红光照射时飞出电子的速度大!于是,光是波动的说法在实验面前陷入了困境。
爱因斯坦以创造性的思维完全从一个不同的角度去考察了光电效应。他提出了光是光量子的理论。按照这个理论,光的能量是由一份一份的不连续的最小单元能量组成的,而这个单元能量大小和光的频率正好成正比关系。光仍然像波动一样具有频率(或波长),但是光还具有微小“粒子”的特性——一个一个的能量单元。这样,光无非就是一束能量流,其中最小的单元能量就称为光量子(光子)。当光照射到金属表面时,光就把光量子的能量传递给电子,光量子就消失了,而电子得到光子的能量,再加上它自身的能量就可能从金属中飞出。由于光量子能量只与光的频率有关,因此只有大于一定频率的光,才能提供足够的能量使电子从金属中被打出来。这样,光量子的理论就以简洁清晰的方式解释了光电效应。
爱因斯坦的成功使他荣获了诺贝尔物理学奖,但是光量子理论却把100多年前关于光的本性的问题的讨论又重新摆到人们面前,光究竟是什么?是波动还是粒子?
物理学的发展已经使人们不得不接受这样的说法,即光有时以波动的面目出现(如光的干涉和衍射),有时又以粒子的姿态出现(如光的人射和反射),但是光既不是如同水波、声波那样的波动,也不是如同微小质点那样的物质粒子,光具有波动-粒子的二象性,也就是波粒二象性。
那么为什么人们看到的太阳光或其他光源发出的光总是稳定的、连续的,而不是一份一份的呢?这是因为光量子的能量微乎其微,用数学形式表示出来就是著名的普朗克关系E=hv,h称为普朗克常数,数值是6.62618×10-34焦 秒,虽然这个数值如此微小,但对于物理学的发展,对于人们认识光的本性的作用却大得很呢。假设我们点亮一盏25瓦的电灯泡,并把发出的光都看成黄光,那么这束光就包含有6×1019个光量子的能量单元,或者说,这束光发出了6×1019个光量子,即每秒发出6000亿亿份能量单元。由于人的肉眼具有的视觉暂留特征,因此,当如此多的光量子以如此快的速度人射时,人的眼睛根本察觉不到一份一份的光量子,所看到的就是一束连续的光。
由此可见,光量子指的是能量的最小单元,它不是物质粒子。虽然光量子的能量大小与频率有关,但它也不是通常我们看到的波动。
总的来说,量子优越性实验并不是一个一蹴而就的工作,而是更快的经典算法和不断提升的量子计算硬件之间的竞争,但最终量子并行性会产生经典计算机无法企及的算力。
来源:科普中国综合科技日报