近日,中国科学技术大学徐铜文教授/葛晓琳教授等在碱性膜(阴离子交换膜)方面取得新突破,他们设计制备了一种新型螺环支化聚合物,成功在材料中构建了丰富且高度连通的亚纳米级微孔离子通道,通过“胶体法”制备的膜在液流电池应用中表现出优异性能且能够在400 mA cm−2的高电流密度下实现快速充放电。研究成果以“High-performance spiro-branched polymeric membranes for sustainability applications”为题发表在国际著名期刊NatureSustainability上。
碱性膜在化工分离、二氧化碳转化、电化学合成氨、电解水制氢、能量转换和存储方面有广泛的应用。然而仅依靠传统的微相分离调控方法难以对离子通道的构建进行精确控制,导致电导率,选择性和稳定性之间的权衡问题。近年来大量的研究表明,通过改变聚合物骨架的刚性和拓扑结构,可以对高分子链间的自由体积进行调控,进而在膜中构建具有明确尺寸的微孔离子传输通道。
在团队的前期研究中,他们通过调控聚合物骨架中两种异构体单元(间三苯基和三苯基)的比例,成功设计了一种具有良好连通性和均匀分布的超微孔的碱性膜(Nat. Commun. 2023, 14, 2732),该款膜已成功实现规模化制备,在电解水制氢、二氧化碳转化、电化学合成氨等领域表现出优异的性能。为了进一步提高膜中的自由体积含量和微孔通道连通性,本工作基于高稳定性的聚(芳基哌啶)聚合物,通过具有立体扭曲结构的螺环支化节点调节分子链的拓扑结构和伸展方向,设计了一种螺环支化聚合物并通过“胶体法”成功制备成大面积碱性膜(图1)。该策略结合了螺环、支链和全碳主链聚合物的结构优势,实现了材料刚性和柔性的平衡。研究结果表明,该材料形成了一种半柔性3D疏松堆积网络结构,该结构能够显著提升聚合物中的自由体积含量,并形成高度连通的亚纳米级微孔离子通道。与传统线性结构聚合物膜相比,螺环支化聚合物膜能够有效降低内部离子的解离和传输能垒,表现出超高的阴离子电导率(30℃时Cl−电导率超过60 mS cm−1,80℃时可达120 mS cm−1)。基于这些膜的中性水系有机液流电池表现出远超以往报道的功率密度和能量效率,并可在400mAcm−2的高电流密度下实现快速充放电。此外,该膜在全钒液流电池中也表现出了优异的性能和化学稳定性。这项工作为膜材料的设计提供了新的思路,可能为各种能源和环境挑战提供新的解决方案。
图1螺环支化碱性膜的设计策略和制备过程