“如果各位前往锦屏深地实验室,就能体验到这离天体演化密码最近的奇妙之旅。穿过地下2400米深处的十几公里的隧道,在运行着的仪器旁,伴随着原子核信号放大后发出的微微闪光,可以去聆听宇宙跳动的脉搏。”在核天体物理领域已经探索了30多年的锦屏深地核天体物理实验项目首席科学家、中国原子能科学研究院(以下简称原子能院)研究员柳卫平,谈起锦屏深地实验项目,依然两眼放光,激情不减当年,“当我凌晨一点值守在实验现场,第一次感觉发现之门离自己如此之近。”
12月18日,我国首个深地核天体物理实验项目JUNA——锦屏深地核天体物理实验发布首批实验成果。
图片丨中国原子能科学研究院
首批发布的4个核天体物理关键反应实验研究,测量灵敏度和统计精度均高于国际同类装置水平,达到国际核天体物理直接测量的最大曝光量、最宽能量范围和最高灵敏度,至此,我国成为世界上第三个具备开展深地核天体物理研究的国家。
图片丨中国原子能科学研究院
聚焦核天体物理“圣杯”反应
1983年诺贝尔物理学奖获得者威廉•福勒曾表示:人体中绝大部分元素是C和O,在化学和生物的层面上,已经基本理解了它们。可在核天体物理的层面上, 并不理解这些C和O是怎么产生的。因此,该反应被誉为核天体物理界的“圣杯”,也被称为生命起源的种子,对恒星演化、大质量恒星最终归宿、宇宙元素丰度甚至生命起源非常重要。
“圣杯”反应也被世界核天体物理学家视为心中的珠穆朗玛峰。
但要摘得“圣杯”困难重重。直接测量“圣杯”反应获取的数据误差最小,但该反应极其微弱,能够屏蔽宇宙射线的实验场所成为核天体物理学家们摘取“圣杯”的必要条件。
打造倾听宇宙声音最合适的环境
柳卫平从未放弃摘取“圣杯”的想法。
2008年世界最大埋深锦屏水电站17.5公里长的交通隧道正式贯通,立刻吸引了柳卫平的注意。最大埋深的隧道之所以具有这么大的吸引力,是因为隧道上方2400米厚的岩层好像一块厚厚的幕布,遮住了宇宙线的光芒,恒星中的核过程在地下重新泛起点点微光。
2015年,中国首个深地核天体物理实验项目获得国家自然基金重大项目支持。
在中国锦屏地下实验室、清华大学、雅砻江流域水电开发有限公司的支持下,原子能院牵头集合中科院近代物理所、北京师范大学等单位,在雅砻江公司锦屏水电站旁的这个世界上最深、最安静的实验环境,建立了一个研究核天体物理的实验平台。
锦屏地下实验室内部
然而仅仅依靠深地对宇宙线的屏蔽是远远不够的。
“申请项目之时,团队虽然在加速器、探测器、大功率靶、离子源方面具备一定的能力和经验,但都局限在地面,深地经验几乎为零。”锦屏深地核天体物理实验项目副总指挥、原子能院核物理所所长郭冰说,锦屏实验设备需要重新研制。
柳卫平对科研的热情,吸引了大量科研人员加入。
中科院近代物理所成功研制出紧凑永磁结构的先进ECR离子源,束流强度可以达到10毫安,这是LUNA(意大利深地核天体实验平台)的10倍;与此同时,原子能院成功研制短间隙加速管,实现强流束高效率传输,并且束流能量的稳定性好于万分之五;原子能院与北京师范大学合作成功研制BGO探测器阵列,探测效率达到70%,分辨率达到国际同类装置最优水平;原子能院研制的大功率靶,靶上功率达到4kW/cm2(千瓦/平方厘米),完全满足强流束实验要求。
该工作是锦屏深地核天体物理实验的首个实验成果。相关文章以封面形式发表于Science Bulletin 2022年第2期。文章第一单位为中国原子能科学研究院,北京师范大学、中科院近代物理研究所、深圳大学、山东大学等为合作单位。第一作者是苏俊教授,联合通讯作者是李志宏和柳卫平研究员。
毛坯房里“抢”出的创新
2020年初,锦屏二期实验室具备了基本的运行条件,项目团队终于获准在2020年9月底至2021年3月初到锦屏地下实验室开展实验研究。
此刻的锦屏地下实验室,就是一间空间巨大的毛坯房。
能否利用这个宝贵的窗口期开展实验?团队意见分歧很大。否定的声音认为时间太短,加速器等设备都是精密仪器,安装调试都是用年来计算。短短的五个月时间,别说做实验,实现设备出束就是巨大的挑战。
在充分听取团队意见后,柳卫平说道:“这件事必须要做,值得冒险。在柳卫平心中,科学发现从来只有第一,没有第二。
为在极短的时间内完成设备安装与调试,留出充足的时间用于科研实验,项目成员不得不与时间赛跑,多次往返北京与西昌之间。从北京到西昌大凉山,相距2000多公里,除了3个多小时的航程,还有近3个小时的盘山路。项目团队将设备从北京拆装到四川西昌锦屏地下实验室。
“不容许有任何闪失,任何一个备品备件都会影响计划进度,哪怕一颗螺丝钉,再加上新冠肺炎疫情的影响,任务艰巨可想而知。”郭冰说。
坚守在实验室的成员,也常常奋战到凌晨两点才回到营地,第二天天不亮又奔赴现场开展战斗。
功夫不负有心人,通过百天大会战,在提前计划节点5天的日子,他们完成了设备的安装与调试。
2020年12月26日,JUNA强流加速器装置在锦屏实验室A1实验厅出束打靶,屏幕上一道刺破黑色的亮光,被认为是扣响“圣杯”的第一缕光。
随后成功开展的4个核天体物理关键反应的直接测量,取得了令人瞩目的创新成果。
对JUNA项目团队来说,首批实验取得的创新性的成果,表明团队研制的最强流深地核天体物理加速器成为该领域具有显著国际影响力的实验平台,中国第一次走向国际核天体物理的舞台中央,并向着“圣杯”反应迈出了坚实的一步。
延伸阅读
在浩瀚无垠的宇宙中,恒星经历着形成、演化、死亡的缓慢过程。这些星体发光发热的能量来自其内部发生的热核聚变反应,这不断发生的核过程为自然界所有化学元素提供了赖以生成的土壤。
核天体物理就是探索这一奇妙过程及其内在规律的学科,它主要运用核物理知识和规律阐释宇宙中各种化学元素及其同位素合成的过程、时间、物理环境及丰度分布,以及核过程对恒星结构及演化进程的影响。
图片丨图虫创意
核天体物理是基础科学研究的前沿领域之一。我国物理学长期发展规划中将核天体物理列为重要发展领域,而基于深地实验室的天体核反应测量能够提供最基础和精确的实验数据。
中国锦屏地下实验室位于四川省凉山州锦屏山,是目前世界上最深的地下实验室,垂直岩石覆盖达2400米。为更好开展核天体物理关键反应直接测量研究,中国原子能科学研究院牵头联合中科院近物所、北京师范大学等国内外优势力量,在中国锦屏地下实验室完成深地加速器安装运行。2020年12月26日,强流加速器成功出束,成为世界上最强流深地加速器,被习近平总书记赞誉为是“战略高技术领域取得新跨越”成果之一。
锦屏地下实验室内部
成果一:25Mg(p,γ)26Al反应取得国际最高精度测量
上世纪八十年代天文观测在银河系星际介质中发现大量26Al,含量约为3倍太阳质量。而26Al寿命不到一百万年,早期产生的26Al已经消亡殆尽,银河系中如此多的26Al的来源成为天体物理关注热点。
25Mg(p,γ)26Al反应是恒星中产生26Al的关键反应。25Mg(p,γ)26Al作为产生 26Al的关键反应对解释26Al的来源问题具有重要意义。JUNA实验实现了该反应中起决定作用的92keV共振国际最高精度测量,实验结果作为国际物理学顶级期刊《科学通报》封面成果发表。
成果二:19F(p,αγ)16O取得国际最精确反应率数据
19F(p,αγ)16O是AGB星演化中的关键问题。目前天文观测发现AGB星中存在氟超丰现象,氟的丰度比太阳系要高几十甚至上百倍,标准恒星模型无法解释这种现象。19F(p,αγ)16O反应的精确测量将有助于解决氟超丰问题。JUNA的实验首次将测量范围拓展到天体物理能区,取得了国际上最精确的反应率数据,实验研究成果发表在国际物理学顶级期刊《物理评论快报》并获编辑推荐。
成果三:13C(α,n)16O反应首次完整覆盖天体物理i-过程能区
13C(α,n)16O反应是重要的中子源反应。比铁重的元素如何合成一直是核天体物理的最重要问题,现在知道大约有一半比铁重的元素是通过慢速中子俘获过程(s过程)形成。这一过程中的原料中子就是由13C(α,n)16O反应提供的。该反应的精确测量对于理解重元素的合成具有重要意义。JUNA实验测量的能量范围首次完整覆盖天体物理i-过程能区,澄清了过去直接测量数据3倍的分歧。
成果四:12C(α, γ)16O反应测量实现国际最高灵敏度
12C(α, γ)16O反应是核天体物理实验中最重要的反应,被誉为核天体物理的“圣杯”。一方面是由于该反应的重要性:直接决定了组成生命最重要的两种元素,碳和氧在宇宙中的比例;对上至铀的几乎所有核素的丰度都有重要的影响;决定了大质量恒星演化的最终命运。另一方面是因为该反应机制复杂,截面极低,实验测量非常困难。项目实验测量达到了国际最低能量,接近了天体物理能区,并且实现了反应测量的最高灵敏度,向摘取“圣杯”跨出重要一步。
我国的锦屏深地实验室有着得天独厚的屏蔽条件,岩石厚度比意大利多1000米,宇宙射线的强度小两个数量级。我国深地核天体物理团队在国家基金委、中核集团和中国科学院的支持下,成功研制出流强可达10 mA的加速器装置。还建成了几何效率超过90%的BGO伽马探测器阵列,经过冷却后获得国际最高能量分辨。相比国际上的深地实验室,锦屏核天体物理实验装置有如下优势:实验室的本底水平最低,深地加速器的束流强度最大,BGO伽马探测器阵列的能量分辨好。借助这一优势,研究团队在2021年1月1日开始进行92 keV共振俘获反应的测量,经过15天夜以继日的奋战,获得了世界上精度最好的测量结果。如图所示,实验得到的共振强度误差为8%,基态分配因子的误差为6%,都是世界最精确的实验结果。
锦屏实验结果与已有数据的比较 图片来源:Science Bulletin
研究结果表明,在AGB星感兴趣的0.1GK温度下,实验得到的反应率比国际评价结果大2.4倍,这意味着AGB星能产生更多的26Al。该高精度的反应率数据将为研究AGB星的对流模型提高一个很好的约束,也能为解释球状星团的元素丰度分布异常提供重要的数据支撑。
综合来源:科技日报、中国科学杂志社、中核集团、《现代物理知识》等