研究发现新型细菌长距离电子传递网络中国科学报 2021-03-23 作者:朱汉斌 李诚斌 |
广东省科学院微生物研究所联合丹麦、比利时及国内多个研究团队共同开展的水环境微生物长距离电子传递网络研究取得重要进展。相关研究近日在线发表于《自然—通讯》。据悉,广东省科学院微生物研究所研究员杨永刚为论文第一作者,该所研究员许玫英和奥胡斯大学副教授董明东为共同通讯作者。
自然界中的一些微生物可以通过合成纳米导线与细胞外的环境介质及其他微生物,进行长距离电子传递及种间电子传递。这些反应在环境中普遍存在,并且通常相互耦联形成长距离电子传递网络,对元素的生物地球化学循环、污染物降解转化等过程产生重要影响。但是,目前已发现的可以合成纳米导线进行长距离电子传递的细菌资源极其缺乏,且均为革兰氏阴性菌,而对于环境中广泛存在且发挥重要作用的革兰氏阳性菌是否具有这一功能一直没有答案。
研究人员发现,一株分离自电子垃圾污染河流沉积物的长线形革兰氏阳性菌Lysinibacillus varians GY32可以在采用培养液或沉积物构建的生物电化学系统中产出电能。在产电过程中,菌株GY32的细胞进一步伸长(单个细胞长度可超过1 mm),并围绕电极相互缠绕,形成厘米尺度的细胞网络。
导电测试发现,菌株GY32聚集形成的细胞网络具有良好的导电特性。通过原子力显微镜和微电极阵列的测试发现,这一导电细胞网络中的细胞是绝缘的,但细胞周身会合成长度可达十几微米的蛋白纳米线,这些蛋白纳米线具有明显的导电性,是GY32细胞网络导电的关键组分。
该研究首次发现了革兰氏阳性细菌通过纳米导线形成长距离电子传递网络,为全面认识自然环境中的微生物长距离电子传递网络提供了重要补充。此外,菌株GY32这种单个细胞长度超过1 mm、且包含多个核区的细胞形态也拓展了人们对细菌形态和分裂机制的认识。
责任编辑:王超
上一篇:机器能否扛起翻译大旗
最新文章
-
为何太阳系所有行星都在同一平面上旋转?
新浪科技 2021-09-29
-
我国学者揭示早期宇宙星际间重元素起源之谜
中国科学报 2021-09-29
-
比“胖五”更能扛!我国新一代载人运载火箭要来了
科技日报 2021-09-29
-
5G演进已开始,6G研究正进行
光明日报 2021-09-28
-
“早期暗能量”或让宇宙年轻10亿岁
科技日报 2021-09-28
-
5G、大数据、人工智能,看看现代交通的创新元素
新华网 2021-09-28