科学家在有机微晶中实现室温玻色-爱因斯坦凝聚态中国科学报 2021-06-23 作者:甘晓 |
玻色-爱因斯坦凝聚态(BEC)是继气、液、固以及等离子态之后物质的第五态,最早在处于极低温度下的冷原子中发现。激子与光子耦合生成的激子极化激元是一种新的玻色子,可以呈现出BEC的宏观量子现象。
近日,中国科学院化学研究所研究员赵永生课题组在有机微纳结构中首次实现了室温下的激子极化激元玻色-爱因斯坦凝聚。这项研究近期在《自然-通讯》上发表。
“激子极化激元”新发现
固态、液态、气态,加之气体被电离后形成的“等离子态”,普遍认为物质具有这四种状态。那么,物质是否存在“第五态”?
对此,爱因斯坦推测,如果将玻色子原子冷却到极低的温度后它们会“凝聚”到能量最低的量子态中,这是一种全新的相态,被成为“玻色-爱因斯坦凝聚态”。
据赵永生介绍,近年来,随着半导体技术的发展,半导体材料中的激发态偶极“激子”与光子耦合生成的半光半物质的“激子极化激元”在室温下就可以发生凝聚。并且,激子极化激元的玻色-爱因斯坦凝聚态表现出新颖的性质,例如超流体、相干光产生等,在拓扑光学、量子调控等方面具有重要应用。
近年来,赵永生课题组与姚建年院士课题组一直致力于有机半导体光子学材料,特别是有机激光材料方面的研究。研究人员在前期工作中发现,有机材料的一种激子“弗伦克尔激子(Frenkel)”具有较高的束缚能和稳定性,可以在室温甚至更高温度下通过Frenkel激子与光子的耦合形成玻色-爱因斯坦凝聚态,为人们调控光子提供了可能。
摆脱“微腔”刚需
研究过程中,“激子极化激元”的产生需要特殊的微腔结构,而目前所采用的微腔结构器件尺寸大、难以控制激子极化激元的传播。这对进一步集成应用带来了困难。
为此,他们设计出一个新颖的结构,来摆脱产生激子极化激元对外加微腔结构的“刚需”。研究人员选择一种具有平面刚性结构并带有侧向取代基的有机分子,将其组装成厚约百纳米、宽度几微米、长度几百微米的带状单晶结构,发展出一种有机半导体单晶微米带。
“这种形貌规整、表面光滑的微米带可以充当一个波导微腔,在光激发下,有机材料中的激子与微腔光子发生强耦合。”赵永生介绍。
在光激发下,有机材料中的激子与微腔光子发生强耦合,微米带中产生大量的激子极化激元,在在有机分子振动能级的辅助下,最终形成玻色-爱因斯坦凝聚态。
具有应用潜力
最新发表的这项研究中,研究人员验证了前述微米带在实现可控的相干光输出方面的应用。
实验中,他们通过改变激发光功率和温度来调控激发区域的激子浓度,利用激子对极化激元的排斥作用将凝聚态下的极化激元沿着微米带向两侧“推出”,从而实现对相干光的发射角度和位置的控制。
本论文审稿人评价:“本文首次报道了室温下在无需外加腔的有机微纳结构中实现激子极化激元玻色-爱因斯坦凝聚,作者将激子极化激元凝聚在简单的有机单晶结构中实现变为可能。这项工作取得了令人激动的结果,将在有机半导体材料和有机光电子学领域引起极大的研究兴趣。这种低维结构在构筑光子学集成回路方面有很大的应用潜力。”
此外,本研究有望推动有机微纳激光的发展。据了解,当前,有机纳米材料均需要通过激光激发后才能出激光,这一性质限制了下一代有机激光显示的便捷应用。全世界研究团队都在为“通电就能出激光”的电泵浦激光开展研究。
而已有研究证实,激子极化激元玻色-爱因斯坦凝聚态有望成为“电泵浦激光”的有效途径之一。最新发表的研究论文无疑将为攻克“电泵浦激光”难题提供基础。
相关论文信息:https://doi.org/10.1038/s41467-021-23524-y
责任编辑:王超
上一篇:直流输电系统有了国产“咽喉”
下一篇:科学家精准编辑4个小麦品质基因
最新文章
-
为何太阳系所有行星都在同一平面上旋转?
新浪科技 2021-09-29
-
我国学者揭示早期宇宙星际间重元素起源之谜
中国科学报 2021-09-29
-
比“胖五”更能扛!我国新一代载人运载火箭要来了
科技日报 2021-09-29
-
5G演进已开始,6G研究正进行
光明日报 2021-09-28
-
“早期暗能量”或让宇宙年轻10亿岁
科技日报 2021-09-28
-
5G、大数据、人工智能,看看现代交通的创新元素
新华网 2021-09-28