新机器学习算法助力防治传染病新华网 2018-11-06 作者:张家伟 |
英国格拉斯哥大学发布一项新研究说,借助新的机器学习算法,科学家有望更高效从基因层面预测埃博拉和寨卡等病毒的天然宿主,从而采取措施预防这些病毒传播到人类身上。
不少致命病毒往往首先在野生动物和昆虫群体中大范围传播,随后才感染人类,并最终导致传染病疫情,因此尽早发现这些病毒的天然宿主对传染病防控来说非常重要。然而,要通过基因组序列来确认不同病毒的宿主往往会耗费很长时间,容易耽误防控工作。
格拉斯哥大学研究人员设计的机器学习算法,旨在把这个耗时过程大幅缩短。相关结果已刊登在美国《科学》杂志上。
他们通过分析超过500种病毒的基因组信息来训练这个算法,以便让它学会将病毒基因组中的特征与它们的动物源头相匹配,从而预测出哪种病毒来自哪个动物宿主,准确率让人满意。
报告作者之一、格拉斯哥大学的达尼埃尔·施特赖克尔说,如果能够利用基因组信息来预测病毒的天然生态,就可帮助人们快速找到病毒的动物宿主,也就能更早干预,预防病毒的传播。
团队目前正开发一个应用程序,可让全球科学家都能提交不同病毒的基因组序列信息,从而利用这个算法快速得出相关的动物宿主评估结果。
责任编辑:杨茗
最新文章
-
为何太阳系所有行星都在同一平面上旋转?
新浪科技 2021-09-29
-
我国学者揭示早期宇宙星际间重元素起源之谜
中国科学报 2021-09-29
-
比“胖五”更能扛!我国新一代载人运载火箭要来了
科技日报 2021-09-29
-
5G演进已开始,6G研究正进行
光明日报 2021-09-28
-
“早期暗能量”或让宇宙年轻10亿岁
科技日报 2021-09-28
-
5G、大数据、人工智能,看看现代交通的创新元素
新华网 2021-09-28