量子级联激光器(Quantum Cascade Laser)是一种能够发射光谱在中红外和远红外频段激光的半导体激光器。它是由贝尔实验室哲罗姆·菲斯特、费德里科·卡帕索等人于1994年率先实现。1
通常的半导体激光器是发光的机制是导带和价带中的电子空穴对在复合过程中发出光子,而量子级联激光器的原理则是,在多层半导体形成的周期性量子阱超晶格结构中,利用其子能带之间的电子跃迁发光。2
发展历程量子级联激光器(Quantum cascade Laser,QCL)是基于半导体耦合量子阱子带(一般为导带)间的电子跃迁所产生的一种单极性光源。量子(quantum)指的是通过调整有源区量子阱的厚度可以改变子带的能级间距,实现对波长的“裁剪”,另外也指器件的尺寸较小。级联(cascade)的意思是有源区中上一组成部分的输出是下一部分的输入,一级接一级串联在一起。激光器(Laser)是指产生特定波长的光源。量子级联激光器的波长可以覆盖在军事、通信、气体检测等领域极具应用价值的中远红外波段。4
量子级联激光器的思想萌芽是由前苏联科学家 Kazarinov R.和 Suris R.在 1971年提出的。如右图所示,在一定的偏压下,电子从量子阱子带间的基态跃迁到下一量子阱的激发态,并释放出光子,之后经非辐射弛豫跃迁到同一量子阱的基态,如此重复跃迁过程期望实现光的级联放大。这一思想原型为量子级联激光器的萌芽,但由于本身结构的设计缺陷以及材料生长技术的限制,这一思想并未在当时产生太大的涟漪。1
随着卓以和等人在材料生长技术(分子束外延技术)取得突破,以及 CapassoF.等人在结构设计理论上的发展,为量子级联激光器的诞生奠定了基础。世界上第一支量子级联激光器诞生于 1994 年的贝尔实验室,是由 Faist J.和 Capasso F.等人采用 InAlAs/InGaAs/InP 材料体系研制成的,其有源区的设计是三阱耦合斜跃迁结构,如右图所示。1
自量子级联激光器诞生以后,许多研究小组开展了相关工作。量子级联激光器的工作温度、输出性能和波长覆盖范围在过去的 20 年取得了迅猛发展。其中,有两个里程碑,一个是 1997 年室温工作的分布反馈量子级联激光器(DFB-QCL)的研制成功,实现了波长为 5.4μm 和 8μm 的 DFB-QCL 的室温工作,其中 5.4μm 的激光器 300K 时峰值功率为 60mW;另一个是 2002 年实现了波长为 9.1μm 量子级联激光器的室温连续工作,器件在 292K 时输出功率为17mW,最高连续工作温度为 321K。4
光源远红外线远红外线(Far Infrared,缩写 FIR),一般是指光谱上位于15~1000µm区域的光波,属于红外线的波长范围。其位于可见光光谱红色光的外侧,为不可见光。不同学界对于远红外线的范围定义常常不同,例如,天文学上常定义远红外线为在波长25µm与350µm之间的电磁波。生物体可以“热”的型式,感受其存在。2
4μm ~ 14 μm范围的远红外线与人体的分子产生共振,可促进微血管扩张、使血液循环顺畅,促进新陈代谢,进而增加身体的免疫力,因此此段远红外线又被称为“生育之光”,因此远红外线除了科技、天文上的应用之外,也可用于医疗和保健方面。有些植物的胚芽经过远红外线照射后,有助于酶活性活化,加速发芽。2
半导体激光半导体激光(Semiconductor laser)在1962年被成功激发,在1970年实现室温下连续发射。后来经过改良,开发出双异质接合型激光及条纹型构造的激光二极管(Laser diode)等,广泛使用于光纤通信、光盘、激光打印机、激光扫描器、激光指示器(激光笔),是生产量最大的激光器。2
在基本构造上,它属于半导体的P-N接面,但激光二极管是以金属包层从两边夹住发光层(活性层),是“双异质接合构造”。而且在激光二极管中,将界面作为发射镜(共振腔)使用。在使用材料方面,有镓(Ga)、砷(As)、铟(In)、磷(P)等。此外在多重量子井型中,也使用Ga·Al·As等。2
由于具有条状结构,即使是微小电流也会增加活性区域的居量反转密度,优点是激发容易呈现单一形式,而且,其寿命可达10~100万小时。2
激光二极体的优点是效率高、体积小、重量轻且价格低。尤其是多重量子井型的效率有20~40%,P-N型也达到数%~25%,总而言之能量效率高是其最大特色。另外,它的连续输出波长涵盖了红外到可见光范围,而光脉冲输出达50W(带宽100ns)等级的产品也已商业化,作为激光雷达或激发光源可说是非常容易使用的激光的例子。2
应用场景环境监控随着经济的发展,人类对于大自然的干扰和对环境的破坏愈发严重,无论是酸雨等气候灾害、亦或是全球气候变暖、还是雾霾现象频发,都严重的影响着人们的生存环境。各国科学家对环境监控都十分重视。2008 年,正值北京奥运会举办之际,美国普林斯顿科研小组利用量子级联激光器搭建了开路式气体检测系统,对北京进行了空气质量评估。“HIPPO”项目(由美国国家科学基金会(NSF)和美国国家海洋和大气局(NOAA)支持)和“CalNEX”项目(由美国加州空气资源局(CARB)和 NOAA 支持)正在开展温室气体的相关研究工作。1
工业监控在石油化工、金属冶炼、矿山开采等行业生产过程中,通过检测产生的相应气体的浓度可以进行进程监控,也可以监控泄露危险气体的浓度,以保障生产安全,已有技术采用 5.2μm QCL 对工业燃烧排气系统中产生的 NO 气体进行实时检测,并使用 7.8μm 的脉冲 QCL 对爆炸物产生的气体进行光学检测。1
医学应用有的疾病会造成人类呼出气体成分的异常升高,通过对呼出气体的种类和浓度进行准确的分析,可以对临床诊断和治疗提供有价值的参考,而且不必因为使用 CT 等仪器而引入过多的辐射。例如,患有糖尿病、肝脏和肾脏疾病的患者呼出的气体中 NH3浓度会出现异常,患有哮喘、心脑血管疾病的患者呼出气体中 CO浓度会增高,因而采用连续工作的 10.3μm的量子级联激光器对人体呼出的氨气浓度进行检测。3
分子光谱研究已有技术采用直接吸收量子级联激光光谱法对同位素气体14N15N16O,15N14N16O 和14N216O 进行高精度的分析,能够同步测定其混合比例。3
其它应用场景除了上述提到的应用场景,以气体检测为基本原理的应用场景还有很多,例如农业生产、食品工业、物联网等,量子级联激光器由于其固有的特点和优势,是很多气体检测应用场景的理想光源。3
优势波长覆盖范围宽量子级联激光器从波长设计原理上与常规半导体激光器不同,常规半导体激光器的激射波长受限于材料自身的禁带宽度,而 QCL 的激射波长是由导带中子带间的能级间距决定的,可以通过调节量子阱/垒层的厚度改变子带间的能级间距,从而改变 QCL 的激射波长。从理论上讲,QCL 可以覆盖中远红外到 THz 波段。1
单个激光器激射波长连续可调谐对于 各种气体的检测,需要激光器的波长精确平滑地从一个波长调谐到另一个波长。对于特定气体的检测,波长更需要精确的调节以匹配其吸收线,也称为分子“指纹”。另外,通过波长调节以匹配气体的第二条吸收线,可以用来作为第一条吸收线是否正确的判断标准。单个激光器的激射波长可以通过改变温度和工作电流进行调谐,已有技术通过改变激光器的工作温度,得到波长 9μm 激光器中心频率 0.9%的调谐范围,约为 10cm-1。而使用外置光栅,可以得到更宽的波长调谐范围。1
量子级联激光器输出功率较高比起中红外波段其它光源,QCL 的输出功率较高。不同的激光气体检测应用中会需要不同的功率,故激光器的高功率工作是非常必要的。改变工作电流就可以改变激光器的输出功率,高功率的激光器能够提供的功率范围大,可以满足更多的应用场景。QCL 输出功率较高的原因可以归结于其本身的有源区结构设计,其电子利用效率较高。内量子效率是指每秒注入有源区的电子-空穴对数能够产生的光子数多少。右图给出典型的 QCL 有源区工作示意图,电子流通过一系列的子带和微带,实现子带中的上能级电子的集聚,之后迅速跃迁到下能级并产生光子,之后注入区再重复利用电子流,使之进入下一个循环。理论上一个电子可以产生与有源区级数相同的光子数,从而内量子效率较高,输出的功率也就越大。而常规的半导体激光器中,一个电子在与空穴相遇后仅辐射出一个光子。1
可室温工作许多应用中需要激光器能室温工作(室温脉冲或室温连续工作)。器件低温工作时需将激光器放置在液氮制冷的杜瓦中,将增大系统体积,而且不利于激光器的光束整形。而常规半导体激光器中电子和空穴的分布对温度十分敏感,在长波长区域,俄歇效应将限制器件的高温工作,而量子级联激光器有源区中子带波函数曲率接近相同,不易产生俄歇效应,已有量子级联激光器最高的连续工作温度为 150°C。1
阈值电流密度较低常规半导体激光器是双极性器件,导带中的电子与价带中的空穴复合生成光子,而量子级联激光器是单极性器件,只靠导带中子带间电子的跃迁产生光子,如右图所示,电子跃迁的始态与终态的曲线的曲率相同,这样形成的增益谱很窄而且对称,是量子级联激光器能够低阈值工作的一个原因。当然,QCL 的阈值电流密度也与有源区设计,材料生长以及器件结构有关。1
尺寸较小量子级联激光器的尺寸较小,如右图所示,量子级联激光器管芯的长度一般为 3mm,随着激光器性能提高,可以将其封装在方盒内,从而方便地移动和操作。1
本词条内容贡献者为:
尚轶伦 - 副教授 - 同济大学数学科学学院