微晶玻璃是通过对玻璃进行一定组成与晶相设计并采用一定的热处理工艺使玻璃基相中发生有控制的析晶,从而形成一种含有大量均匀分布微晶和残余玻璃相的复合材料,又称为玻璃陶瓷。通过对微晶玻璃化学组成、晶相种类和比例的目标设计,可以使材料在保持一定生物活性的基础上,其力学性能(如抗折强度及断裂韧性等)及可加工性能得到显著改善。生物活性微晶玻璃可用于制作一些承力的骨植入部件,如人造颌骨、脊椎及四肢骨置换部件等。
可切削生物活性微晶玻璃针对生物活性玻璃和微晶玻璃的脆性高、断裂韧性低、不易加工的缺点,这类微晶玻璃的特点是既具有一定的生物活性(低于生物活性玻璃)、可与骨组织形成骨性结合界面,又具有较好的加工性能,可根据临床需要利用一般的机加工方法(如车削、打磨、钻孔、攻丝等)制成各种不同形状的部件,材料不会发生破裂。可切削生物活性微晶玻璃的主晶相是氟金云母和氟磷灰石,前者是层状硅酸盐矿物,当受到因加工而导致的外力时,首先会引起氟金云母的001晶面发生解理、滑移或剥脱,使外力从一个晶粒传导到另一个晶粒,导致不同晶粒的001晶面连续发生解理、滑移和剥落,最终使该微晶玻璃在加工过程中只出现微小鳞片状的脱落,而不会发牛材料的破裂,从而被加工成一定的形状,并可达到较高的加工精度。可切削生物活性微晶玻璃已用于制作人工听小骨、人工椎体、长骨骨管及下颌骨等。可切削生物活性微晶玻璃在晶化处理前随着组成的不同可以具有不同的分相形式,而分相对于材料的析晶具有重要影响。可以通过调整玻璃的组成来改变母体玻璃的分相形式,通过一定的热处理工艺达到控制析晶的目的。1
A·W生物活性微晶玻璃A.W生物活性微晶玻璃属于五元系统微晶玻璃,其主晶相为氧氟磷灰石,氟磷灰石微晶有助于提高其生物活眭;而大量随机取向、均匀分布的针状硅灰石晶体则有利于提高材料的机械强度和可切削加工性能。A·W微晶玻璃在模拟生理溶液(SBF)中反应7天后表面可被羟基磷灰石层所覆盖,其表面羟基磷灰石层(HA)的形成机理见图1。
A·W微晶玻璃表面在SBF溶液中形成羟基磷灰石层(HA)是由于材料的玻璃相中Ca2+和HSiO3-离子溶出,它们对于HA的形成具有重要作用。前者使得溶液的离了浓度相对HA达到过饱和,促进HA析出;后者则为HA析出提供了有利的成核位。此外,由于材料中的玻璃相和口硅灰石微晶相的溶解,使材料中的氧氟磷灰石微晶相残留于材料中,形成凹凸不平的粗糙表面,也有利于HA的晶核形成。2
溶胶-凝胶生物活性玻璃溶胶-凝胶生物活性玻璃具有较熔融法制备的45S5系列生物活性玻璃更高的生物活性。体外实验表明,在37℃的模拟生理溶液中8h即可在材料表面形成一层具有一定结晶度的碳酸羟基磷灰石,而45S5生物活性玻璃则需要24h左右的时问。此外,相比较熔融法制备的生物活性玻璃而言,溶胶凝胶生物活性玻璃具有以下优点:
①通过溶-凝胶工艺制备生物活性玻璃的过程基本上是在室温下进行,后续的热处理温度在600~700℃,这要比熔融法(1350~1400℃)制备生物活性玻璃低得多,在工艺上易于操作。
②化学成分的均匀性可达分子级别。通过将溶液充分混合,可以使溶液在大约0.5 nm的尺度内达到化学均匀,这同熔融法使用的微米级粉末原料的混合均匀度相比,提高104~105倍。
③高化学纯度。溶胶-凝胶生物活性玻璃制备采用高纯度化学试剂为原料,还可采用一些进一步纯化原料的工艺,从而保证了所得材料的纯度。
④可以对材料的组成和分子结构进行设计和剪裁而赋予材料特定的理化和生物学特性,满足特定部位的组织修复需要。
⑤溶胶-凝胶生物活性玻璃具有纳米级微孔、巨大的比表面积、较高的化学活性和吸附特性,这些性质对于制备组织修复材料具有重要意义。如通过复合、表面接枝、生物组装与骨修复有关的蛋白和生长因子等,使材料具有更好的组织修复功能。
⑥利用溶胶-凝胶法适合于制备超细粉体、薄膜、涂层、纤维等多种形式的生物活性玻璃材料,利用熔融法则较难实现。2
结构组成溶胶-凝胶生物活性玻璃的化学组成不同于熔融法制备的45S5系列生物活性玻璃。相对于后者的四元系统而言,溶胶-凝胶生物活性玻璃组成中去掉了Na2O组分,成为CaO-SiO2-P2O5三元系统。此外,溶胶-凝胶生物活性玻璃组成中的SiO2含量的上限比45S5生物活性玻璃体系要高,材料组成中SiO2摩尔含量一旦超过60%,材料则会丧失生物活性。这是由于随着SiO2含量增高,玻璃硅氧网络的连接程度越高,结构越牢固,材料与生理溶液发生离子交换以及材料结构中的离子扩散越困难,在生理环境中难以在材料表面形成碳酸羟基磷灰石层。而溶胶-凝胶生物活性玻璃组成中的SiO2摩尔含量在高达80%的情况下仍可使材料保持一定的生物活性,由于溶胶-凝胶生物活性玻璃的特殊制备工艺而导致玻璃网络结构不同于传统熔融法制备的生物活性玻璃,如结构相对比较疏松、网络中断点数远远高于熔融玻璃,结构中含有大量的OH-离子。同时,由于材料结构中的纳米微孔使其具有巨大的比表面积。这些结构特性对于提高材料的生物活性具有重要意义。1
本词条内容贡献者为:
程鹏 - 副教授 - 西南大学