希尔伯特-黄转换(Hilbert-Huang Transform),由台湾中央研究院院士黄锷(Norden E. Huang)等人提出,将欲分析数据分解为本质模态函数(intrinsic mode functions, IMF),这样的分解流程称为经验模态分解(Empirical Mode Decomposition, EMD)的方法。然后将IMF作希尔伯特转换(Hilbert Transform),正确地获得资料的瞬时频率。此方法处理对象乃针对非稳态与非线性讯号。与其他数学转换运算(如傅立叶变换)不同,希尔伯特-黄转换算是一种应用在数据资料上的算法,而非理论工具。
简介希尔伯特-黄转换(Hilbert-Huang Transform),由台湾中央研究院院士黄锷(Norden E. Huang)等人提出,将欲分析数据分解为本质模态函数(intrinsic mode functions, IMF),这样的分解流程称为经验模态分解(Empirical Mode Decomposition, EMD)的方法。然后将IMF作希尔伯特转换(Hilbert Transform),正确地获得资料的瞬时频率。此方法处理对象乃针对非稳态与非线性讯号。与其他数学转换运算(如傅立叶变换)不同,希尔伯特-黄转换算是一种应用在数据资料上的算法,而非理论工具。1
本质模态函数(IMF)任何一个资料,满足下列两个条件即可称作本质模态函数。
⒈局部极大值(local maxima)以及局部极小值(local minima)的数目之和必须与零交越点(zero crossing)的数目相等或是最多只能差1,也就是说一个极值后面必需马上接一个零交越点。
⒉ 在任何时间点,局部最大值所定义的上包络线(upper envelope)与局部极小值所定义的下包络线,取平均要接近为零。
因此,一个函数若属于IMF,代表其波形局部对称于零平均值。此类函数类似于弦波(sinusoid-like),但是这些类似于弦波的部分其周期与振幅可以不是固定。因为,可以直接使用希尔伯特转换,求得有意义的瞬时频率。1
混模问题在经验模态分解的过程中,会有混模问题产生,混模问题就是在同一个本质模态函数里会有不同尺度的讯号混杂,或者是同一尺度的讯号出现在不同的本质模态函数里。混模问题的发生是因为某些系统讯发生间断性讯号 (intermittence),间断性讯号会使经验模态分析法分解无法正确分解出同一尺度的讯号。混模会造成本质模态函数失去物理意义。此外,混模问题也可能使经验模态分解的算法不稳定,任何扰动都可能会产生新的本质模态函数。
有关于混模问题的解决,在2005年有人提出了以弦波辅助的遮罩方法(masking method)来解决混模问题,而在2009年黄锷等人提出了以噪声辅助的总体经验模态分解法(Ensemble Empirical Mode Decomposition),利用加入白噪声(white noise)来解决混模问题。1
IMF的统计特性EMD能够将一个信号拆解成数个部分,但通常不能够将讯号与噪声彻底分开来,在每一个输出的轨道之中,或多或少都参杂着一些噪声。
由于自然中常见的噪声都是白噪音,借由混杂不同振幅程度的白噪音至原讯号,可以得到不同的曲线,借由设定不同的边界之后,再汇入EMD得到的各个IMF,便可以得知该IMF投射到这个信号-噪声座标图上的位置,借此作为权重各个IMF的有效性,分别出何者含有较多的目标讯息量,何者含有较多的噪声。此类方法用来分类各种IMF的有效性上有非常好的成效,唯一的缺点是由于必须要建构出一张信号-噪声座标图,会产生许多额外的运算量。而这样的缺点,在资料量非常大的时候,如果要得到一个够准确信号-噪声座标图,会造成系统稍大的负担。1
遮罩方法(Masking Method)为一种弦波辅助的资料分析方法(sinusoidal assisted data analysis),利用加减一个高于所有讯号频率的弦波,使得极值出现的速率一致(消除间断性特性)来解决混模问题。
主要流程为
步骤1 :利用频谱分析方法找出频谱的组成
步骤2 :加减一个高于频谱上最高频率的遮罩弦波讯号以消除间断性特性
步骤3 :分别做经验模态分解得到良好的本质模态函数
步骤4 :将其相加除以二来抵消遮罩讯号
遮罩方法有三个问题
1.没有针对相位做处理,使极值点出现错误。
2.遮罩的弦波讯号频率需要远小于取样频率。
3.只能针对比较简单的合成讯号做处理。1
应用由前述可知,希尔伯特-黄转换与传统的傅立叶转换、小波转换(wavelet)、短时间傅立叶转换(short-time fourier transform, STFT)不同等建立在旋积(Convolution)上的讯号处理方式,希尔伯特-黄转换是一套基于差值所建立出来的讯号处理模式,在大多数的情况下,运算量会远小于上述基于旋积所延伸出来的讯号转换方式。
由于本质上的差异,透过希尔伯特-黄转换在各种应用上,皆有可能得到一种新的解读方式与成果,因此希尔伯特-黄转换被广泛到运用到各个领域之中:
1.ECG的分析:
由于ECG再测量时,常会有基准线(baseline)的偏移,因此使用希尔伯特-黄转换最后可以在EMD中,找到整体的趋势线,将之屏弃之后就能得到基准线校准之后的ECG信号。 除此之外,ECG经过希尔伯特-黄转换处理之后,可以有效的滤掉原本的高频噪声,使得相较于FFT之后的频谱,相较于直接转换的原讯号相比,在ECG相对应的峰值频率能够较为专一清楚。
2.太阳黑子的观测: 2015年1月21日 (三) 17:56 (UTC)
太阳黑子是观察太阳活动的一个重要依据,透过太阳黑子的观测,人们可以得知太阳目前的活跃程度,由于太阳黑子的多寡大小等,皆为不稳定、非线性的讯号,因此对于傅立叶变换来说, 可能会因为Windows Function的性质差异,使得反映出来当下的资料有所误差。而对于希尔伯特-黄转换来说,并不会造成太大的影响,因此希尔伯特-黄转换在太阳黑子的观测上能有较佳的结果。
3.语音辨识:
由于每个人的音色、说话习惯是截然不同的,透过希尔伯特-黄转换,能够将各种不同频率的泛音以及振幅有规律且有效的分离出来,对于语音辨识来说是非常好的转换工具。同时,除了作为区分人与人之间身份的特性之外,希尔伯特-黄转换之后的语音讯号,对于应用大量机器学习的语音相关技术来说,是一个分类清楚且特性明显的训练资料,能够进一步用来发展语意辨识等需要依靠大量资料,才能建构出有效模型的技术。此类特性为傅立叶转换难以比拟的。
4.建筑结构的检测:
希尔伯特-黄转换能将讯号拆解成许多种子讯号,透过比对结构检测产生的讯号,能清楚的找到异常的检测讯号,并进一步找出建筑结构有安全疑虑之处。
5.经济数据的预测:
希尔伯特-黄转换可以处理金融相关的趋势,找到短期中期长期的相关趋势。
6.影像处理:
希尔伯特-黄转换在改良EMD之后,在影像的融合与增强上,相较于原本的EMD快上一倍。
7.地震研究:
希尔伯特-黄转换用来处理地震表面波的散射并比对经过傅立叶转换后之后的地震信号,提供另一种角度研究并解析地震信号。 公元1999年时,台湾发生惨重的集集大地震,在事后比对由傅立叶转换所产生的频谱分析,发现在非静态、非线性的的表面信号之中,因为傅立叶转换本身线性的特性,使得低频信号被严重低估,同时产生大力的高频泛音。 由于地震讯号大多为非静态、非线性的,这样的特性透过希尔伯特-黄转换分析,可能可以得到重大的分析成果,透过分离并保真原有信号,可以得知高频讯号与低频讯号可能发别来自于不同的区域,借此研究地壳运动。
8.神经科学:
EEG运用希尔伯特-黄转换之后,将之与TMS做比对,找寻脑部对于输入信号的反应。
9.大气科学:
由于大气科学中,无论是气流、降雨等,多半皆为间歇性的讯号,并不会是一个稳定的连续信号,不过透过带宽较窄的IMF,使得最后得到的结果,可以呈现一个周期且有趋势的变化。例如:曾经有研究运用希尔伯特-黄转换以3至5年为周期分析后指出维吉尼亚(Virginia)的降雨与Southern Oscillation 指数的相关系数高达0.65。
总结以上,可以发现希尔伯特-黄转换与传统的频谱分析有极大的差异,希尔伯特-黄转换由于透过EMD来分析,使得其在预测趋势、分类资料(频率、时间)上,相较于传统的基于傅立叶转换所发展出来的信号技术,更能够让使用者从信号之中找到想要的趋势,因此在各个不同领域之中,都能或多或少看到希尔伯特-黄转换的应用。这些应用在传统信号处理领域是较为少见的,不过由于希尔伯特-黄转的建立方式的特性,使得他在统计上拥有极大的优点。1
曲线选择由上述可知,经验模态分解(EMD)是透过最大值重建讯号,并剔除之。因此,渐进的方式对于希尔伯特-黄转换来说,是一个非常重要的选择,不同的渐进选择会影响到希尔伯特-黄转换最后的结果。在大多数的情况之中,所选择的大多都是贝兹曲线,其能够有效产生出弦波,不过在某些极端例子中,例如脉冲波等,使用贝兹曲线作为希尔伯特-黄转换的渐进方式,会使得得出来的结果变得平滑而丧失了脉冲波的特性。因此针对输入信号选择适当的渐进方式,对于希尔伯特-黄转换是非常重要的课题。一般而言,越多阶(order)的曲线会得到较佳的渐进效果,不过同时的也会增加计算量。
同时,倘若没有设定结束递回的条件,任意一个讯号最后是否都能制造出有限组IMF,换言之,IMF的叠加是否可以收敛成任意一个讯号,这个问题在经过证明之后,发现是一个NP问题。1
结论傅立叶变换是将一个讯号分解成无限多个弦波来分析资料,但是希尔伯特-黄转换则是将一个讯号分解成数个近似于弦波的讯号(周期、振幅不固定)和一个趋势函数来做分析。
两者各有其优缺点,整理如下
优点:
1.避免复杂的数学运算
2.可分析频率会随时间变化的讯号
3.较适于分析气候、经济等具有趋势的资料
4.可以找出一个函数的趋势
缺点:
1.缺乏严谨的物理及数学上的意义
2.需要复杂的递回,运算时间反而比短时距傅立叶变换要长
3.希尔伯特转换未必能正确计算出本质模态函数之瞬时频率
4.无法使用快速傅立叶变换
5.只有在特例(组合较简单的资料)时使用希尔伯特-黄转换较快
传统上认为希尔伯特-黄转换是一套无用且精准度低的方式,同时在发展前期,受到Bedrosian theorem的限制,直到后续又许多改良方法之后,使得希尔伯特-黄转换的缺点得到改善。同时其善于处理非静态、非线性的特性使得希尔伯特-黄转换提供了另外一套分析工具,弥补了傅立叶转换先天上的系统限制。混合两种方式之后,相较于单用一种方式的信号,能够得到更多的资讯提供判读及分析。1
相关条目希尔伯特转换
包络线
样条
时频分析
本词条内容贡献者为:
李嘉骞 - 博士 - 同济大学