版权归原作者所有,如有侵权,请联系我们

[科普中国]-比例控制规律

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

在双位控制系统中,被控变量不可避免地会产生持续的等幅振荡过程,这是由于双位调节器只有特定的两个输出位,相应的调节阀也只有两个极限位置,势必在一个极限位置时被控变量大于设定值,而在另一个位置时又小于设定值,不可能正好和对象的负荷要求相适应,这就使被控变量处于不可避免地持续的等幅振荡过程,而对要求被控变量比较稳定的系统是不能满足的。如果能够使阀的开度与被控变量的偏差成比例的话,就有可能获得与对象负荷相适应的调节参数,从而使被控变量趋于稳定,达到平衡状态,这种阀门开度的改变量与被控变量偏差位成比例的规律,就是比例控制规律。1

比例控制规律及其特点如果调节器的输出信号变化量与输入的偏差信号之间成比例关系,称为比例控制规律,一般用字母P表示。比例调节器的放大倍数KP是可调的,它决定了比例作用的强弱,所以比例调节器实际上可以看成一个放大倍数可调的放大器,其特性如图1所示。当放大倍数KP大于1时,比例作用为放大,而当放大倍数KP小于1时,比例作用为缩小。对应于一定的放大倍数KP,比例调节器的输入偏差大,输出变化量也大;输入偏差小,相应的输出变化也小。

图2是液位比例控制系统,被控变量是水箱的液位。0为杠杆的支点,杠杆的一端固定着浮球,另一端和调节阀的阀杆连接。浮球能随着液位的升高而升高,随液位的下降而一起下降。浮球通过有支点的杠杆带动阀芯,浮球升高阀门关小,输入流量减少;浮球下降阀门开大,流量增加。

如果原来液位稳定在图2中实线位置,进入水箱的流量和排出水箱的流量相等。当水箱的出水阀门突然开大一点,排出量就增加而使浮球下降。浮球下降将通过杠杆把进水阀门开大,使进水量增加。当进水量又等于排水量时,液位也就不再变化而重新稳定下来,达到新的稳定态;相反排水量突然减少,液位上升,进水阀门由于浮球的作用也关小,使进水量减少,直至进出量相等,液位达到新的稳定状态。

从上述分析可以看出,浮球随液位变化与进水阀门开度的变化是同时的,这说明比例作用是及时的。另外,液位一旦变化,虽经比例控制系统能达到稳定,但回不到原来的设定值。从图2看到,进水阀本身不能开大,而受浮球的控制。浮球要下降,只有在液位下降时才有可能。因此在这种情况下,液位要比原来低一高度为代价,才能换得阀门开大,使液位重新获得平衡,如图中虚线位置。也就是说,液位新的平衡位置相对于原来设定位置有一差值(即水箱实线与虚线液位之差),此差值称为余差,所以比例控制又称有差控制。

比例控制的优点是反应快,有偏差信号输入时。输出立刻和它成比例地变化,偏差越大,输出的控制作用越强。1

比例度在工业上所使用的调节器,习惯上而是采用比例度δ(也称比例带,在仪表上用P表示),而不用放大倍数KP来衡量比例控制作用的强弱。

所谓比例度指调节器输入的变化与相应输出变化的百分数。比例度就是使调节器的输出变化满刻度时(也就是调节阀从全关到全开或相反),相应的仪表指针变化占仪表测量范围的百分数,或者说使调节器输出变化满刻度时,输入偏差对应于指示刻度的百分数。

例如,一只电动比例温度调节器,温度刻度范围是50~100℃,电动调节器输出是0~10mA,当指示指针从70℃移到80℃时,调节器相应的输出电流从3mA变化到8mA,其比例度为δ=40%。

当温度变化全量程的40%时,调节器的输出从0mA变化到10mA,在这个范围内,温度的变化e和调节器的输出变化△p是成比例的。但当温度变化超过全量程的40%时,(在上例中,即温度变化超过20℃时),调节器的输出就不能再跟着变化了,因此,调节器的输出最多只能变化100%。

调节器的比例度δ的大小与输入输出的关系如图3所示。从图中可以看出,比例度越大,使输出变化全范围时所需的输入偏差变化区间也就越大,而比例放大作用就越弱,反之亦然。

比例度δ与放大倍数KP成反比,是互为倒数关系。调节器的比例度δ越小,它的放大倍数越大,它将偏差(调节器输入)放大的能力也越大,反之亦然。因此比例度δ和放大倍数KP一样,都是表示一个比例调节器的控制作用强弱的参数。1

比例度对控制过程的影响当干扰出现时,调节器的比例度δ不同,则控制过程的变化情况亦不同,比例度对控制过程的影响如图4所示。

由图可见,比例度δ越大即KP越小过渡过程曲线越平稳,但静差很大。比例度越小,则过渡过程曲线越振荡。比例度过小时,就可能出现发散振荡。当比例度δ太大时,即放大倍数KP太小,在干扰产生后,调节器的输出变化很小,调节阀开度改变很小,被控变量的变化很缓慢,比例控制作用太小(如曲线6所示)。当比例度偏大时,KP偏小,在同样的偏差下,调节器输出也较大,调节阀开度改变亦较大,被控变量变化也比较灵敏,开始有些震荡,静差不大(如曲线5所示)。当比例偏小,调节阀开度改变更大,大到有点过分时,被控变量也就跟着过分地变化,再拉回来时又拉过头,结果会出现激烈的振荡(如曲线3所示)。当比例度继续减小某一数值时,系统出现等幅振荡,这时的比例度称为临界比例度δK(如曲线2所示)。

当比例度小于δK时,比例控制作用太强,在干扰产生后,被控变量将出现发散振荡(如曲线1所示),这是很危险的。工艺生产通常要求比较平稳而静差又不太大的控制过程,如曲线4所示,因此选择合适的比例带δ,比例控制作用适当,被控变量的最大偏差和静差都不太大,过渡过程稳定得快,一般只有两个波,控制时间短。

比例控制作用虽然及时,控制作用强、但是有余差存在,被控变量不能完全回复到设定值,调节精度不高。因此比例控制只能用于干扰较小,滞后较小,而时间常数又不太小的对象。一般情况下比例度的大致范围为:压力对象30~70%,流量对象40~100%,液位对象20~80%,温度对象20~60%。有时也有例外情况。1

本词条内容贡献者为:

郑国忠 - 副教授 - 华北电力大学