版权归原作者所有,如有侵权,请联系我们

[科普中国]-双重壁热交换器

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

双重壁热交换器,即泰勒-乌拉姆构型(英语:Teller–Ulam design,缩写:T-U design),是当前世界上绝大部分核聚变武器所使用的核武器设计概念。由于这个构型使用氢同位素聚变反应来产生中子,它被认为是“氢弹的秘密”。然而,在绝大多数应用中,它的毁灭性的能量都是来自于铀的核裂变,而不是氢的核聚变。

简介双重壁热交换器,即泰勒-乌拉姆构型(英语:Teller–Ulam design,缩写:T-U design),是当前世界上绝大部分核聚变武器所使用的核武器设计概念。由于这个构型使用氢同位素聚变反应来产生中子,它被认为是“氢弹的秘密”。然而,在绝大多数应用中,它的毁灭性的能量都是来自于铀的核裂变,而不是氢的核聚变。

在接近三十年的时间里,这个构型的基本特征都作为国家机密秘而不宣。它的特征包括

将核弹的爆炸分成两个阶段,一个是用于引发次级核爆的初级核爆,另一个就是威力更大的次级核爆。

通过初级核弹中核裂变产生的X-射线对次级核弹进行压缩,这个过程被称为对次级核弹的辐射内爆。

在冷压缩以后,通过次级核弹内部的裂变爆炸对次级核弹进行加热。

在环绕次级核弹的灼热的辐射通道与相对温度较低的次级核弹内部之间存在着温度差,辐射内爆正是利用这个温度差而形成的热机来传递能量。推送层的质量很大,它可以作为隔温层来保持这个温度差。推送层也是内爆的反射层,可以增加和延长对次级核弹的压缩。由于一般反射层使用铀-238作为制造材料,这种材料在俘获了聚变产生的中子以后会发生裂变,从而释放出更大的能量。在大多数采用了泰勒-乌拉姆设计的核弹中,推送层裂变是爆炸的主要能量来源。在推送层裂变的过程中还会产生了大量的放射性产物,形成放射性尘埃。

1952年,美国在常春藤麦克核试验中对本设计的基本原理进行了测试。常春藤麦克试验中引爆的装置是一个专门制造的三层建筑,其中充满了液态氘。由于缺乏可移动性,它基本上无法被称为是炸弹。苏联于1953年8月12日引爆了世界上第一枚实用的氢弹,它的名字是RDS-6sSloika,美国人给它的代号是Joe 4。它所使用的原理与常春藤麦克装置有些区别。在苏联,泰勒-乌拉姆构型被称为安德烈·萨哈罗夫第三方法,在1955年使用核弹RDS-6tTruba对设计进行了验证。类似的设备也在英国、法国设计出来,但是实验代号不为人所知。

它以两个主要的贡献者命名:爱德华·泰勒和斯坦尼斯拉夫·乌拉姆。他们在1951年为美国提出了这个构型。最初,这个方案被用于数百万吨当量的热核武器,但是由于它也非常适用于小型核武器,现在美、英、俄基本都使用泰勒-乌拉姆构型。泰勒-乌拉姆构型是世界上唯二两种二阶段热核武器设计方案,而另一种则是由中国研制采用的于敏构型,后者仅用于中国的核计划。1

基本原理泰勒-乌拉姆设计的基本思想是热核武器中的不同部分可以分级依次引爆,每一级爆炸所产生的能量可以用于点燃下一级。既意味着初级需要包含一个裂变核弹(作为触发级),而次级包含聚变的核燃料。由于这种分级设计,曾经有人根据次级核弹的原理,认为也可以向核弹中添加一个第三级,其中仍然加有聚变燃料。由初级核弹释放的能量通过辐射内爆的方式传递给次级核弹,使其被加热压缩,最终引发核聚变。

包围着其他各个部件的部分被称为环空腔,或辐射盒,它可以将初级核弹产生的能量暂时存处于其中。辐射盒的外部通常就是炸弹的的外壳,是任何热核炸弹配置的唯一能够公开提供的可视证据。大量关于不同核武器外壳的图片被解密。

初级核弹被认为是一种标准的内爆式裂变弹,但是也很有可能是一种钚核心的聚变增强裂变弹,其中添加了少量的聚变燃料(50:50的氘氚混合气体)以提高裂变的效率。聚变燃料在被加热和压缩以后发生聚变可以提供额外的高能中子,引发更多的链式反应。一般来说,能够创造热核武器的研究计划都是建立在已经能够生产聚变增强裂变弹的技术基础上的。这些核弹的弹芯一般由钚-239或者铀-235制成球形,外部的传统高爆炸药排成特殊的形状称为爆炸透镜。当引爆时,这些爆炸透镜会将球形弹芯压缩成更小的球体,达到临界质量引发链式反应,发生核爆炸。这是传统意义上的原子弹的工作原理。

次级核弹通常是一个柱形的聚变燃料以及层层封装的其它部件。柱形聚变燃料周围首先是一层推送-反射层,由一层很重的铀-238或者铅制成。这层材料可以帮助压缩聚变燃料。如果推送-反射层使用了铀-238,该材料还可以在聚变产生的快中子作用下发生裂变,释放出更多的能力。聚变燃料内部通常是某种形式的氘化锂,这种物质与液态氘氚混合物相比,使热核武器更实用化。在第一枚氢弹装置常春藤麦克核试验中,引爆的装置包含了复杂的低温结构以储存液态的氘和氚)。氘化锂在使用中子引爆时会产生氚,这是一种氢的更重的同位素,相对来说在与氘混合的情况下更容易与氘发生核聚变。(参见核聚变中关于聚变反应的更细节的技术讨论)。在聚变燃料中间插入一根被称为火花塞的由可裂变物质(钚-239或铀-235)制成的中空柱体。该柱体的特殊形状使得当它被压缩时,自身会达到临界质量,产生核裂变。如果使用了第三级核弹,它将会放置在次级核弹的下部,很有可能使用相同的材料制成。

将初级核弹和次级核弹分开的部件被称为级间结构。初级核弹的裂变可能会产生三种能量,1)高爆炸药内爆初级核弹时产生的膨胀的热空气,2)电磁辐射,以及3)初级核弹爆炸时产生的中子。级间结构负责精确调节从初级核弹传向次级核弹的能量。它需要在适当地时间将热空气、电子辐射以及中子传递到适当的位置。如果级间结构的设计不能达到最优,很可能无法保证次级核弹每次都被成功引爆,这种情况被称为裂变失败。城堡行动系列核试验中的Koon核试验就是一个很好的例子。该实验的一个很小的瑕疵导致初级核弹产生的中子流过早的加热次级核弹,从而没有充分压缩,导致没有产生任何聚变。

在公开文献中,很少有关于级间结构的详细信息。最好的资料来源是一张来自英国热核武器的简化示意图。这张图与美国W76核弹头很像。这张图出现在绿色和平组织的一份题目为双重使用核技术的报告中。图中显示了主要的部件和排列方式,但是绝大部分细节都省略掉了;而图中所提供的细节也很可能被省略和不准确的成分。图中被标记为中子聚焦透镜和顶盖和反射器包装;前一个用来引导中子流向铀-235和钚-239制成的火花塞,而后一部分指的是一个X射线反射镜。这个反射镜一般是一个由对X-射线不透明的物质(如铀)制成的圆柱体,两端分别是初级核弹与次级核弹。它不会像镜子那样反射,相反,它会在初级核弹产生的X射线作用下被加热到非常高的温度,随后,它的热辐射会产生更为平均分布的X射线。这些X射线将被引导至次级核弹,引发辐射内爆。随后被标记的是反射器/中子枪架。反射器将中心的中子辐射透镜和挨着外层初级核弹的封装间的空隙封闭起来。它将初级核弹与次级核弹分离开来,功能也和前面描述的反射器一致。核弹中还有大约六个中子枪(参见桑迪亚国家实验室提供的资料[1]),每一个中子枪都有一端穿过反射器,这些枪被夹在枪架上,围绕着封装大致均匀排列。根据中子枪这个名字,可以认为中子会从每一支枪的末端服射出,射入核弹的中轴。每一支枪射出的中子都会在中子聚焦透镜的作用下射向初级核弹中心,以增强钚的裂变。 下面还描述了聚苯乙烯极化/等离子源。

第一份公开提到了级间结构的美国政府文档是是最近提供给公众的关于宣传可靠性替换核弹头计划的文档。其中有一张图片分项描述了可靠性体更换核弹头的可能优势,其中一项是级间结构的新设计将会替换原来的易碎的有毒材料以及需要唯一的工厂制造的昂贵的专用材料易碎的有毒材料很可能是铍,因为它符合这个描述,而且也可以调节初级核弹的中子流量。当然,也有可能采用一些通过特别方式吸收并重新辐射X-射线的材料。而专门的材料名为FOGBANK,这其实是一个尚未解密的代号。它的成分目前仍是机密,但是有人认为它可能是一种气溶胶。生命延长计划要求这种物质在停产多年以后重新开始生产。Y-12工厂目前是唯一的提供者,这也是唯一的工厂所指。制造过程涉及一种名为氰化甲烷的物质,这种物质有一定毒性,是一种高挥发性的溶剂,对工人有害,仅仅在2006年三月就引起了三次疏散。1

总结对以上的解释简要总结如下:

在初级阶段需要引爆一枚内爆型裂变弹。如果在初级核弹弹芯中加入少量的氘氚混合气体,在爆炸过程中这些气体将会被压缩的同时引发核聚变。聚变过程中释放的中子将会引发初级阶段中使用的钚-239或者铀-235更多的链式反应。使用聚变燃料可以提升裂变反应的效率,这种设计被称为聚变增强。如果没有这种设计,很大一部分可裂变物质在炸弹被炸开前还没有来得及反应,于是就白白浪费了。小男孩核弹中铀的效率仅有1.4%,而胖子核弹也只有14%,就是因为没有使用聚变增强裂变这个技术。

初级阶段释放出的能量传递给次级阶段。这个过程准确的机制仍然是未知的。传递来得能量将聚变燃料和火花塞压缩,被压缩的火花塞达到了临界质量以后开始裂变的链式反应,反应放出的能量将聚变燃料加热到足够高的温度以后就会引发聚变,同时反应也为聚变燃料中的锂提供中子,以制造氚来进行聚变。一般来说,根据气体定律,在有限的空间内提升气体分子的动能会同时增加气体的温度和压强。

次级核弹的聚变燃料还可以使用贫铀或者天然铀包裹起来。虽然铀-238不是能够维持链式反应的可裂变物质,但是它仍然可以在聚变释放出的高能中子的轰击下发生裂变,释放出大量能量。

实际生产的热核武器的设计可能会发生一些变动。比如,可能不使用聚变增强的初级核弹、使用不同种类的聚变燃料、可能在聚变燃料周围包裹一层铍(或其它中子反射物质)以避免发生进一步的裂变。1

设计变种目前已经提出一些可能的武器设计的变种

是否采用铀-238制作最后一级裂变的反射层。

在一些描述中,增加的内部结构可以用来保护次级核弹不受初级核弹释放的过量中子的影响。

封装内部可能会也可能不会被加工成能够反射X射线。X射线的反射与镜子反射光线不同,而是反射器的金属被X射线加热,使得金属自身发射X射线,随后被送往次级核弹。

下面将会谈到两个专门的变种:常春藤麦克核试验中的低温冷却的液化氘和卵形初级椭球形次级的W88核弹的公认设计。大多数核弹并没有明显地包含有第三级。美国曾被认为制作一种这样的型号的核弹,威力巨大的两千五百万吨当量的B41核弹,而苏联也被认为使用多级级数造出了五千万吨级的沙皇炸弹。目前除了关于苏联的Sloika设计,没有任何公开的关于其它实验成功的非泰勒-乌拉姆构型的氢弹的记载。

从根本上说,泰勒-乌拉姆构型依赖于至少两次内爆:第一次,次级核弹中传统的化学爆炸将会压缩裂变弹芯,使得裂变比化学爆炸强烈许多倍;第二次,初级核弹中产生的辐射被用于压缩并点燃次级核弹,引起聚变的爆炸,又是第一次核爆的许多倍。这种压缩的链可能会有任意多级,这种设计的威力可能被放大到任意倍,直到末日装置的水平。但是目前热核武器的当量不超过数十兆吨,而且一般也认为已经足够摧毁最大的实际目标了。1

本词条内容贡献者为:

杨晓红 - 副教授 - 西南大学