版权归原作者所有,如有侵权,请联系我们

[科普中国]-分片段

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

在数学中,分片段定义的函数(也称为分段函数或混合函数)是一个函数,是通过多个子函数而定义的,施加到主函数的域的一定的时间间隔的每个子函数(子域)。分片段实际上是一种表达函数的方式,而不是函数本身的一个特征,但是具有额外的限定,可以描述函数的本质。例如,分段多项式函数是在其每个子域上是多项式的函数,但是每个子域上可能是不同的。 字分段也用来描述适用于每件分段定义的函数的任何属性,但不一定保持为函数的整个域。一个函数是分段微分的或分段连续微分的,如果每个子块在整个子域内是可区分的,即使整个函数在块之间的点上可能是不可区分的。在凸分析中,导数的概念可以被分段函数的子导数的概念取代。尽管分段定义中的“块”不一定是间隔,但是除非是间隔,否则函数不被称为“分段线性”或“分段连续”或“分段可微”。

符号和解释分片段函数使用通用函数表示法来定义,其中函数的主体是函数和相关子域的数组。至关重要的是,在大多数情况下,只有有限数量的子域,每个子域必须是一个区间,以便将整个函数称为“分片段”。例如,考虑绝对值函数的分片段定义:

对于x小于零的所有值,使用第一个函数( - x),它将取消输入值的符号,使负数为正数。对于x大于或等于零的所有值,使用第二个函数(x),它对输入值本身进行简单计算。 考虑分片段函数f(x)在x的特定值处计算:

|| ||

连续性在两侧由不同二次函数组成的分片段函数1

如果满足以下条件,则分片段函数在给定的时间间隔内是连续的:

它在整个间隔中被定义

其构成函数在该间隔上是连续的

在该区间内的子域的每个端点处不存在不连续性。

例如,图中的函数在其子域中是分段连续的,但在整个域中是不连续的。图中的函数包含跳跃不连续性

应用在应用的数学分析中,已经发现分片段函数与人类视觉系统的许多模型一致,其中在第一阶段将图像感知为包括由边缘分隔的平滑区域。特别是,剪切片已经被用作表示系统来提供2D和3D中该模型类的稀疏近似。

常见示例分片段函数的具体实例包括:

阶跃函数, 由常量函数组成的分片段函数

Boxcar function,

单位阶跃函数

符号函数

Piecewise linear function, 由线段组成的分片段函数

绝对值

破碎的幂定律, 由幂定律组成的分片段函数

样条函数, 由多项式函数组成的分片段函数,在多项式片段连接处具有高度的平滑度

B-样条

PDIFF

本词条内容贡献者为:

胡建平 - 副教授 - 西北工业大学