版权归原作者所有,如有侵权,请联系我们

[科普中国]-玻璃成形

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

玻璃的成形是将熔融的玻璃液转变为具有几何形状制品的过程,这一过程称之为玻璃的一次成形或热端成形。玻璃必须在一定的黏度(温度)范围内才能成形。在成形时,玻璃液除做机械运动之外,还同周围介质进行连续的热交换和热传递。玻璃液首先由黏性液态转变为塑性状态,然后再转变成脆性固态,因此,玻璃的成形过程是极其复杂的过程。

热端成形的玻璃经过再次加工成为制品的过程,称为玻璃的再成形(再加工)或冷端成形,其方法可以分为两类:热成形和冷成形。后者包括物理成形(研磨和抛光等)和化学成形(高硅氧的微孔玻璃等)。玻璃的成形通常指热成形。1

浮法玻璃成型浮法是指熔窑熔融质量符合要求的玻璃液,流入锡槽后在熔融金属锡液的表面上成为平板玻璃的方法。

玻璃配合料人窑后经熔化、澄清、冷却,成为1150~1100℃的玻璃液,通过熔窑与锡槽相连接的流槽流入熔融的锡液面上;在自身重力、表面张力以及拉引力的作用下,玻璃液在锡液面上摊开成为玻璃带,在锡槽中完成自由展薄、抛光、拉薄或堆厚、拉引等过程;前行到锡槽末端的玻璃带已冷却到600℃左右,把即将硬化的玻璃带拉引出锡槽,通过过渡辊台进人退火窑内。目前,国内外所有浮法线都采用拉边机法。生产的玻璃厚度越薄,则拉边机的对数就越多。2

方法玻璃的成形方法有:吹制法(空心玻璃等)、压制法(烟缸、水杯等)、压延法(压花玻璃等)、浇铸法(光学玻璃等)、拉制法(平板玻璃、玻璃管等)、离心法(玻璃棉等)、烧结法(泡沫玻璃、工艺玻璃等)、喷吹法(玻璃徽珠等)、浮法(平板玻璃等)、焊接法(仪器玻璃等)等。

上述成形方法,按照制品形状产生的方法,可分为有模成形和无模成形两大类,有模成形又分为单侧模(吹制、离心成形)和双侧模(压制成形)。1

原理在玻璃制品生产中,成形过程是利用玻璃液的黏度为基础的。把熔制好的玻璃液冷却到成形所要求的可塑程度,利用这种适度的可塑性使成形的制品固定成形,而后以一定的冷却速度冷却,应用玻璃黏度随温度变化的特性使制品成形。

从黏度-温度曲线可以看出,在比较高的温度范围内,冷却开始时,其黏度的增长速度很缓慢,随着温度下降,黏度的温度梯度骤然增大,曲线呈弯曲状,当温度下降到900~1000%黏度开始快速增长。由此可知,玻璃成形的黏度一温度范围应选择在曲线的弯曲部分,这时的玻璃液最适宜于成形。成形方法不同时,其初始的成形黏度也不相同。例如,喷棉的成形温度高于拉丝的成形初始温度。

表面张力总是力图把物体的表面收缩成球状,表面张力的这种特性在玻璃成形过程中起着极为重要的作用。例如,在吹制成形中,由于表面张力的作用,不用成形模就可以制得球状玻璃泡等。玻璃制品表面火焰抛光和玻璃制品爆口均是充分利用玻璃表面张力作用。

表面张力则随温度降低而呈线性增加,而玻璃黏度随温度降低呈指数变化,因而两者在不同温度范围内对成形作用的大小是不同的。在大多数情况下,玻璃液的黏度和表面张力对制品的成形是有利因素,但有时也是降低产量和质量的重要因素之一。例如,窗玻璃上的玻璃筋、压花玻璃上的花纹清晰度等。

玻璃的热膨胀系数对于套色玻璃、封接玻璃、电子玻璃、光学玻璃等极为重要。玻璃的其他热学性能在成形过程中也有一定的影响。当玻璃成形时,玻璃液滴从黏弹性体到固体状态,借助模具成形时,模具表面因受热膨胀,玻璃液滴此时处于收缩,两者之间存在1%~2%的差值,这样就在制品上产生残余应力,导致制品表面产生微裂纹。因此,在成形过程消除模具对玻璃质量的影响变得十分重要,设计好模具尺寸也是质量保障前提。

在生产电真空玻璃或成形套料制品时,玻璃的热膨胀系数也是十分重要的。玻璃与玻璃的热膨胀系数应当匹配,玻璃与封接金属的热膨胀系数也要匹配,否则会出现应力而破裂。

玻璃的热性质是成形过程中影响热传递的主要因素,与玻璃的冷却速度以及成形的温度制度有极大的关系。玻璃的比热容决定着玻璃成形过程中需要放出的热量。玻璃的比热容随温度的下降而下降。高温时,瓶罐玻璃的比热容不论是长性玻璃或短性玻璃,不随其组成发生明显的变化。玻璃的热导率表示单位时间内的传热量。表面辐射强度用辐射系数来表征。透热性即为红外线和可见光的透过能力。玻璃的热导率、表面辐射强度和透热性越大,冷却速度就越快,成形速度也就越快。1

本词条内容贡献者为:

李航 - 副教授 - 西南大学