版权归原作者所有,如有侵权,请联系我们

[科普中国]-扩散磁振造影

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

扩散核磁造影,全名水分子扩散核磁造影,是一种更进步的核磁共振技术。

1980年代中期扩散核磁造影的理论已被提出,1986年 Le Bihan 提出扩散磁振造影临床应用的潜在可能性。1990年Moseley的论文提到侦测猫的大脑局部缺血情况。1994年Basser推导出扩散张量磁振造影(Diffusion Tensor Imaging, DTI)的理论,2000年Wedeen成功发展扩散谱影像的技术。扩散核磁造影结合了PGSE测量扩散磁振讯号与扩散磁振造影技术的概念,可应用于早期诊断缺血性脑中风,可以准确评估脑部、肝脏肿瘤的治疗效果。

简介扩散核磁造影,全名水分子扩散核磁造影,是一种更进步的核磁共振技术。

1980年代中期扩散核磁造影的理论已被提出,1986年 Le Bihan 提出扩散磁振造影临床应用的潜在可能性。1990年Moseley的论文提到侦测猫的大脑局部缺血情况。1994年Basser推导出扩散张量磁振造影(Diffusion Tensor Imaging, DTI)的理论,2000年Wedeen成功发展扩散谱影像的技术。扩散核磁造影结合了PGSE测量扩散磁振讯号与扩散磁振造影技术的概念,可应用于早期诊断缺血性脑中风,可以准确评估脑部、肝脏肿瘤的治疗效果。1

核磁共振成像核磁共振成像(英语:NuclearMagneticResonanceImaging,简称NMRI),又称自旋成像(英语:spin imaging),也称磁共振成像MagneticResonanceImaging,简称MRI),台湾又称磁振造影,香港又称磁力共振成像,是利用核磁共振(nuclear magnetic resonance,简称NMR)原理,依据所释放的能量在物质内部不同结构环境中不同的衰减,通过外加梯度磁场检测所发射出的电磁波,即可得知构成这一物体原子核的位置和种类,据此可以绘制成物体内部的结构图像。

将这种技术用于人体内部结构的成像,就产生出一种革命性的医学诊断工具。快速变化的梯度磁场的应用,大大加快了核磁共振成像的速度,使该技术在临床诊断、科学研究的应用成为现实,极大地推动了医学、神经生理学和认知神经科学的迅速发展。

从核磁共振现象发现到MRI技术成熟这几十年期间,有关核磁共振的研究领域曾在三个领域(物理学、化学、生理学或医学)内获得了6次诺贝尔奖,足以说明此领域及其衍生技术的重要性。1

技术应用MRI在医学上的应用检查目的

侦测及诊断心脏疾病、脑血管意外及血管疾病

胸腔及腹腔的器官疾病的侦测与诊断

诊断及评价、追踪肿瘤的情况及功能上的障碍

MRI被广泛运用在运动相关伤害的诊断上,对近骨骼和骨骼周围的软组织,包括韧带与肌肉,可呈现清晰影像,因此在脊椎及关节问题上,是极具敏感的检查。

因MRI没有辐射暴露的危险,因此经常被使用在生殖系统、乳房、骨盆及膀胱病的侦测及诊断上。

原理概述

氢核是人体成像的首选核种:人体各种组织含有大量的水和碳氢化合物,所以氢核的核磁共振灵活度高、信号强,这是人们首选氢核作为人体成像元素的原因。NMR信号强度与样品中氢核密度有关,人体中各种组织间含水比例不同,即含氢核数的多少不同,则NMR信号强度有差异,利用这种差异作为特征量,把各种组织分开,这就是氢核密度的核磁共振图像。人体不同组织之间、正常组织与该组织中的病变组织之间氢核密度、弛豫时间T1、T2三个参数的差异,是MRI用于临床诊断最主要的物理基础。

当施加一射频脉冲信号时,氢核能态发生变化,射频过后,氢核返回初始能态,共振产生的电磁波便发射出来。原子核振动的微小差别可以被精确地检测到,经过进一步的计算机处理,即可能获得反应组织化学结构组成的三维图像,从中我们可以获得包括组织中水分差异以及水分子运动的信息。这样,病理变化就能被记录下来。

人体2/3的重量为水分,如此高的比例正是磁共振成像技术能被广泛应用于医学诊断的基础。人体内器官和组织中的水分并不相同,很多疾病的病理过程会导致水分形态的变化,即可由磁共振图像反应出来。

MRI所获得的图像非常清晰精细,大大提高了医生的诊断效率,避免了剖胸或剖腹探查诊断的手术。由于MRI不使用对人体有害的X射线和易引起过敏反应的造影剂,因此对人体没有损害。MRI可对人体各部位多角度、多平面成像,其分辨力高,能更客观更具体地显示人体内的解剖组织及相邻关系,对病灶能更好地进行定位定性。对全身各系统疾病的诊断,尤其是早期肿瘤的诊断有很大的价值。1

MRI在化学领域的应用MRI在化学领域的应用没有医学领域那么广泛,主要是因为技术上的难题及成像材料上的困难,目前主要应用于以下几个方面:

在高分子化学领域,如碳纤维增强环氧树脂的研究、固态反应的空间有向性研究、聚合物中溶剂扩散的研究、聚合物硫化及弹性体的均匀性研究等;

在金属陶瓷中,通过对多孔结构的研究来检测陶瓷制品中存在的沙眼;

在火箭燃料中,用于探测固体燃料中的缺陷以及填充物、增塑剂和推进剂的分布情况;

在石油化学方面,主要侧重于研究流体在岩石中的分布状态和流通性以及对油藏描述与强化采油机理的研究。

磁共振成像的其他进展核磁共振分析技术是通过核磁共振谱线特征参数(如谱线宽度、谱线轮廓形状、谱线面积、谱线位置等)的测定来分析物质的分子结构与性质。它可以不破坏被测样品的内部结构,是一种完全无损的检测方法。同时,它具有非常高的分辨本领和精确度,而且可以用于测量的核也比较多,所有这些都优于其它测量方法。因此,核磁共振技术在物理、化学、医疗、石油化工、考古等方面获得了广泛的应用。

磁共振显微术(MR microscopy, MRM/μMRI)是MRI技术中稍微晚一些发展起来的技术,MRM最高空间分辨率是4μm,已经可以接近一般光学显微镜像的水平。MRM已经非常普遍地用作疾病和药物的动物模型研究。

活体磁共振能谱(in vivo MR spectroscopy, MRS)能够测定动物或人体某一指定部位的NMR谱,从而直接辨认和分析其中的化学成分。2

本词条内容贡献者为:

王沛 - 副教授、副研究员 - 中国科学院工程热物理研究所