液相分离法是指将均匀液相或熔体通过某种机理分离成两种不同成份互不混溶的液相的方法,包括液相色谱法、多维液相分离等方法。碳纳米管的液相分离方法主要包括电泳法、密度梯度离心法、管壁修饰法、凝胶色谱法和萃取法等。
定义液相分离法是指将均匀液相或熔体通过某种机理分离成两种不同成份互不混溶的液相的方法。
液相色谱法液相色谱法的分离机理是基于混合物中各组分对两相亲和力的差别。根据固定相的不同,液相色谱分为液固色谱、液液色谱和键合相色谱。应用最广的是以硅胶为填料的液固色谱和以微硅胶为基质的键合相色谱。根据固定相的形式,液相色谱法可以分为柱色谱法、纸色谱法及薄层色谱法。按吸附力可分为吸附色谱、分配色谱、离子交换色谱和凝胶渗透色谱。近年来,在液相柱色谱系统中加上高压液流系统,使流动相在高压下快速流动,以提高分离效果,因此出现了高效(又称高压)液相色谱法。1
液固吸附色谱高效液相色谱中的一种,是基于物质吸附作用的不同而实现分离。其固定相是一些具有吸附活性的物质如硅胶、氧化铝、分子筛、聚酰胺等。
液液分配色谱法基于被测物质在固定相和流动相之间的相对溶解度的差异,通过溶质在两相之间进行分配以实现分离。根据固定相与流动相的极性不同,分为正相色谱和反相色谱。前者是用硅胶或极性键合相为固定相,非极性溶剂为流动相;后者是硅胶为基质的烷基键合相为固定相,极性溶剂为流动相,适用于非极性化合物的分离。
离子交换色谱法基于离子交换树脂上可电离的离子与流动相中具有相同电荷的溶质离子进行可逆交换,依据这些离子对离子交换基具有不同的亲和力而实现分离。薄壳型离子交换树脂柱效高,主要用来分离简单的混合物;多孔性树脂进样容量大,主要用来分离复杂混合物。
凝胶渗透色谱法又称为尺寸排阻色谱法。1959年首先用于生物化学领域。以溶剂为流动相,多孔填料(如多孔硅胶、多孔玻璃)或多孔交联高分子凝胶为分离介质的液相色谱法。当混合物溶液入凝胶色谱柱后,流经多孔凝胶时,体积比多孔凝胶孔隙大的分子不能渗透到凝胶孔隙里去而从凝胶颗粒间隙中流过,较早地被冲洗出柱外,而小分子可渗透到凝胶孔隙里面去,较晚地被冲洗出来,混合物经过凝胶色谱柱后就按其分子大小顺序先后由柱中流出达到分离的目的。用凝胶渗透色谱的优点是:分离不需要梯度冲洗装置 ;同样大小的柱能接受比通常液相色谱大得多的试样量;试样在柱中稀释少,因而容易检测;组分的保留时间可提供分子尺寸信息;色谱柱寿命长。它的缺点是:不能分离分子尺寸相同的混合物,色谱柱的分离度低;峰容量小;可能有其他保留机理起作用时引起干扰。凝胶渗透色谱法为测定高聚物分子量和分子量分布提供了一个有效的方法,此外还可用来分离齐聚物、单体和聚合物添加剂等。
离子色谱法采用柱色谱技术的一种高效液相色谱法,样品展开方式采用洗脱法。根据不同的分离方式,离子色谱可以分为高效离子色谱 、离子排斥色谱和流动相离子色谱3类。高效离子色谱法使用低容量的离子交换树脂,分离机理主要是离子交换。离子排斥色谱法用高容量的树脂,分离机理主要是利用离子排斥原理。流动相离子色谱用不含离子交换基团的多孔树脂,分离机理主要是基于吸附和离子对的形成。
多维液相分离1987年,Giddin2指出,多维联用系统的总分辨率约等于各维分辨率平方和的平方根,总峰容量约等于各维峰容量的乘积。根据这一理论,多维分离系统可以减少峰重叠9.10,提高系统的分辨率和峰容量,为样品的定性提高更多的数据信息。此外,它还具有分离速度快、重现性好、’白动化程度高的优点。因此,发展多维液相分离技术对于蛋白质组学的研究至关重要。
多维液相分离系统大致可以分为两大类:离线联用和在线联用。离线联用是指收集第一维的每个组分峰,然后分别引入第二维进一步分离。采用在线联用的方法,第一维的洗脱液携带已初步分离的组分直接进人第二维进行再次分离。后者与前者相比,样品不会损失、速度更快、自动化程度更高,是研究的热点,也是本文介绍的重点。多维液相分离系统,尤其是采用在线连接的方式,为达到最大的分离效率,必须满足以下两点标准名:1)理想情况下,各维应具有完全正交的分离机制;2)高维的分离速度应该快于低维的分离速度,从而可以避免已经分开组分在高维分离中重新混合。常见的多维液相分离系统主要可以分为二维液相色谱、二维液相色谱一毛细管电泳和二维毛细管电泳三大类。3
碳纳米管液相分离碳纳米管是一种由二维石墨烯片层卷曲而形成的无缝管状结构,其液相分离方法主要包括电泳法、密度梯度离心法、管壁修饰法、凝胶色谱法和萃取法等。4
电泳法金属性和半导体性碳纳米管的介电常数具有显著差异,金属性碳纳米管的介电常数远远大于半导体性碳纳米管,在不均匀的交流电场作用下,利用金属性与半导体性碳纳米管所受的电泳力大小的差异可以实现两者的分离。
电泳分离的最大优点是可以同时获得高纯度的金属性和半导体性碳纳米管,但该方法实验操作繁琐,而且产量较低。
密度梯度离心密度梯度离心是一种分离细胞的常用方法。其原理是在离心管中加入惰性密度梯度介质,再加入样品溶液,样品在离心力的作用下分配到梯度中的特定位置,在密度梯度不同的区域形成区带.金属性和半导体性碳纳米管与表面活性剂的结合能力不同,在表面活性剂的溶液中,二者产生密度的差异,从而可以通过密度梯度离心实现分离。
密度梯度离心法可以达到宏量分离的要求,但是碳纳米管需要经过超声分散、超速离心、分层抽取等过程,碳纳米管的损失较多,并且管壁上吸附的各类有机分子难以去除,影响最终碳纳米管的结构和性能。
管壁修饰法金属性和半导体性碳纳米管的化学反应活性不同。金属性碳纳米管由于在费米能级处的电子态密度高于半导体性碳纳米管,所以通常情况下,金属性碳纳米管的化学活性高于半导体性碳纳米管,可以和修饰分子优先反应。
碳纳米管分散液在室温放置14d后,金属性碳纳米管沉降析出,半导体性碳纳米管则留在溶液中。共扼高分子修饰的碳纳米管不会产生结构上的改变,因此不会对其J陛质产生影响,特别是在电子器件领域,共扼体系分离碳纳米管具有很大的应用潜力,合适的修饰分子的选择是实现成功分离的关键。虽然可以达到宏量分离、原理和过程也比较简单,但是修饰分子的寻找以及化学修饰对碳纳米管结构和性质的影响是制约该方法发展的2个重要因素。
凝胶色谱法凝胶色谱法基于金属性和半导体性碳纳米管与凝胶的作用力不同,在碳纳米管溶液通过凝胶色谱柱的过程中,与凝胶作用力强的半导体性碳纳米管留在柱上,作用力弱的金属性碳纳米管留在溶液中,从而实现分离。
影响凝胶色谱分离的主要因素有碳纳米管分散液浓度、表面活性剂类型及浓度、凝胶柱类型等.此方法分离效率高,可以宏量分离,同时分离过程不会对碳纳米管造成损伤。
萃取分离萃取分离是近年来兴起的一种分离单壁碳纳米管的新方法。它利用金属性和半导体性碳纳米管在两相溶液体系里分布系数的差异来实现二者的分离。
萃取分离过程操作简单,用时少且容易实现宏量分离,这种简单、快捷、低成本的方法为单壁碳纳米管的分离提供了新途径。
本词条内容贡献者为:
张磊 - 副教授 - 西南大学