毛细管电泳检测技术作为现今一种主要的分析技术,凭借其高效、灵敏、快速、设备简单、广泛适用性等特点,广泛应用于各个领域。它是一类以毛细管为分离通道、以高压直流电场为驱动力的新型液相分离技术。 毛细管电泳实际上包含电泳、色谱及其交叉内容,它使分析化学得以从微升水平进入纳升水平,并使单细胞分析,乃至单分子分析成为可能。
产生和发展毛细管电泳技术(CapillaryElectrophoresis,CE)是一种在电泳技术的基础上发展的一种现代分离技术。电泳技术作为一种分离技术已有近百年历史,1937年A.Tiselius首先提出:传统电泳最大的局限是难以克服由高电压引起的焦耳热。1967年,Hjerten最先提出了毛细管电泳的雏形,即在直径为3mm的毛细管中做自由溶液的区带电泳。但他并没有完全克服传统电泳的弊端。直至1981年Jorgenson和Lukacs提出在75μm内径毛细管柱内用高电压进行分离,这时现代毛细管电泳技术真正产生。1984年Terabe将胶束引入毛细管电泳,开创了毛细管电泳的重要分支:胶束电动毛细管色谱(MEKC)。1987年Hjerten等把传统的等电聚焦过程转移到毛细管内进行。同年,Cohen发表了毛细管凝胶电泳的工作。近年来,将液相色谱的固定相引入毛细管电泳中,又发展了电色谱,扩大了电泳的应用范围。
毛细管电泳技术兼有高压电泳及高效液相色谱等优点,其突出特点是:(1)所需样品量少、仪器简单、操作简便。(2)分析速度快,分离效率高,分辨率高,灵敏度高。(3)操作模式多,开发分析方法容易。(4)实验成本低,消耗少。(5)应用范围极广。
自1988年出现了第一批毛细管电泳商品仪器,短短几年内,由于CE符合了以生物工程为代表的生命科学各领域中对多肽、蛋白质(包括酶,抗体)、核苷酸乃至脱氧核糖核酸(DNA)的分离分析要求,得到了迅速的发展。
原理毛细管电泳的基本装置是一根充满电泳缓冲液的毛细管,和与毛细管两端相连的两个小瓶。微量样品从毛细管的一端通过“压力”或“电迁移”进入毛细管。电泳时,与高压电源连接的两个电极分别浸人毛细管两端小瓶的缓冲液中。样品朝与自身所带电荷极性相反的电极方向泳动。各组分因其分子大小、所带电荷数、等电点等性质的不同而迁移速率不同,依次移动至毛细管输出端附近的光检测器,检测、记录吸光度,并在屏幕上以迁移时间为横坐标,吸光度为纵坐标将各组分以吸收峰的形式动态直观地记录下来1。
毛细管电泳技术的应用环境分析毛细管电泳在环境分析中主要应用于水样中阳离子和阴离子的分析、多环芳烃的分析、农药残留量的分析、多氯联苯的分析、金属离子和无机阴离子的分析、DNA加合物的测定、酚类化合物分析等几个方面。
食品分析毛细管电泳在食品分析中主要应用于蛋白质、氨基酸、生物胺、维生素、碳水化合物、无机离子、有机酸等的含量测定以及食品添加剂、残留农药、生物毒素的分析。
药物分析从1987年首次将毛细管电泳技术用于药物分析以来,已有约200篇论文报道CE用于几百种药物及各种剂型中主药成分分析、相关杂质检测、纯度检查、无机离子含量测定及定性鉴别等药物常规分析。进来对于中药成分分析以及手性对映体分离分析越来越成为关注的焦点2。
本词条内容贡献者为:
梁志宏 - 副教授 - 中国农业大学