简介
作为建筑基础的“基础”——基桩,在工程里的重要作用尤为特殊。由于单桩的承载力是桩土共同作用的,其间的应力传递机理与过程极其复杂,确定桩端、桩侧阻力这一随机变量的规律与代表值,是一个大家一直努力研究的棘手课题。统计分析要求具有足够数量且相同条件的子样形成样本,一般工程仅两三根试桩。而且土层的性质与分布亦千变万化,即便是同一项工程的桩,其规格、类型、埋深等也不可能完全相同。过度追求速度,轻视基本试验,过于自信的经验判断“计算”,造成桩的承载力,特别是竖向抗拔承载力的潜在危险,尤其是在重大工程、地质复杂区域的桩基工程中。笔者以亲历测例,对单桩竖向抗拔检测进行探讨1。
单桩竖向抗拔承载力检测概述单桩竖向抗拔承载力检测指通过一定的方法测试单桩抵抗竖向抗拔的能力并进行分析处理的过程。获取单桩竖向抗拔承载力的方法有单桩竖向抗拔静载试验、规范经验公式和理论分析。通过对相关数据的统计分析处理,可以对工程试桩的抗拔极限承载力进行推算,但这些方法的推算结果与实测值往往有较大的差异。单桩竖向抗拔检测是利用静力学的基本定理,通过采用相应的加荷设备和反力支座形成检测加荷系统,模拟接近于竖向抗拔桩的实际工作条件进行测试的方法。
单桩竖向抗拔检测实例工程及地质概况某高层建筑,所在位置地势平坦,西北靠山,东南临海。地上22层及2层裙房,地下2层,地下室高度为9.3m。建设用地面积8,825.23平方米,总建筑面积58,837.77平方米。为框架核心筒结构。设计桩径为φ0.8m、1.0m、1.1m、1.2m、2.0m,桩长为6.0m~25.9m的冲孔灌注桩,桩身砼强度等级为C40,桩底岩土层为微风化岩。工程桩总数为62根。
各岩土层自上而下简述:
1 、杂填土( Q m l) : 稍湿、稍密状态,局部中密,揭露厚度0.90m~6.30m。
2 、淤泥质中砂( Q m c ) : 饱和, 稍密, 揭露厚度0 . 4 0 m ~ 2 . 5 0 m 。
3 、粉质粘土( Q e l):湿,可塑,揭露厚度0 . 4 0 m ~ 2 1 . 9 0 m 。
4 、凝灰质砂岩( J 3):全风化, 揭露厚度0 . 9 0 m ~ 1 2 . 8 0 m ; 强风化, 揭露厚度0 . 3 0 m ~ 1 0 . 5 m ; 中风化, 中风化, 揭露厚度0.10m~1.90m;微风化,揭露厚度2.95m~6.06m。
检测概述1、检测加卸载
据委托方提供的相关资料和现场踏勘,通过低应变法对三根受检桩进行桩身完整性检测,桩完整性类别均为Ⅰ类。按照深圳市《建筑基桩检测规程》采用单桩竖向抗拔静载检测方法并制订了检测方案。采用经换填处理的地基代替锚桩提供支座反力。加载系统由经检定合格的静载测试仪、柱式传感器、千斤顶、油泵等组成。
采用慢速维持荷载法,逐级等量加载,每级加载为预定最大试验荷载的1/10,第一级取分级荷载的2倍,在每一级荷载作用下,每一小时内的桩顶上拔量不超过0.1mm,方可施加下一级荷载;卸载逐级等量进行,每级卸载量取加载时分级荷载的2倍。
2、位移观测
在桩顶面装设4个经检定合格的MS-50型位移传感器(同时由建设单位委托第三方,在桩身顶面设置钉点,采用徕卡TM30全站仪进行监控测量)。每级荷载施加后按第5、15、30、45、60min自动采集桩顶上拔量,以后每隔30min测读一次;卸载每级荷载维持1h,按第15、30、60min自动采集桩顶上拔量后,即可卸下一级荷载,卸载至零后,采集桩顶残余上拔量,维持时间为3h,采集时间为第15、30min,以后每隔30min采集一次。
3、检测结果
据现场采集数据分析整理,绘制出荷载-上拔值关系即Q-s曲线和上拔值-时间对数关系即s-lgt曲线。
由采集数据及关系曲线得,24#桩在加荷第4级荷载过程中,桩顶上拔量大于前一级荷载作用下的上拔量5倍;29#桩在加荷第4级荷载过程中,累计桩顶上拔量超过100mm;44#桩在加荷第9级荷载过程中,桩顶上拔量大于前一级荷载作用下的上拔量5倍。
4、检测结论
验收检测24、29和44#桩单桩竖向抗拔承载力检测值分别为2,280kN、2,280kN、3,960kN,均不满足设计要求(设计各桩单桩承载力特征值分别为2,850kN、2,850kN和2,200kN)2。
分析探讨设计者往往凭经验计取单桩承载力设计值。基本试验时,其真意并非欲经试验得出真正的承载力,仅仅是想验证一下取值是否“符合”而已。就建设者而言还可将试桩保留为工程桩。更有基本试验也“懒得”进行的,此类情况并不少见。由于建设单位的特殊强势地位,往往急于“变现”——将图纸变为实物产品并售卖,过度追求速度和经济效益,忽略过程的重要,连带“胁迫”相关方均主动或被动地跟从。就该例而言,“拼命”抢,似乎既满足建设方与施工方的需求(越快越好,节约成本),设计方也落个省事(省得费尽心思精打细算,也省得得罪雇主),“三全其美”何乐而不为?最终却还得变更设计,大量增加抗浮锚杆,增加底板厚度等等。尽管造成损失,但隐患得以排除亦算万幸。《建筑地基基础设计规范》第8.5.6条第一款明确规定,“单桩竖向承载力特征值应通过单桩竖向静载荷试验确定。在同一条件下的试桩数量,不宜少于总桩数的1%且不应少于3根。单桩的静载荷试验,应按本规范附录Q进行。”
目前抗拔桩的研究主要为承载力,对变形的研究较少。而且只关注侧阻的“量”,忽略了抗拔桩侧摩阻力与抗压侧摩阻力发挥特点的差异,而抗拔桩侧摩阻力的发挥过程对抗拔桩极限承载力产生了较大的影响。为追求高承载力一味提高混凝土强度等级,增大配筋率、桩长和桩径,设计浪费普遍存在。抗拔桩临界位移比抗压桩小。相同桩顶荷载下抗拔桩的桩身变形要比抗压桩大得多。很多学者致力于研究单桩竖向抗拔承载力检测的其他方法,如自平衡法。尽管表面节省工时、稳定可靠,具有较强的实用性等优越性,但其仅仅是表面现象。
因为将很多类似传统竖向抗拔检测所需的工作时间及产生的费用提前到了受检桩的施工前及施工阶段中(如:荷载箱准备及其检定;延长桩长以加强反力;增加钢筋笼段;钢筋笼与荷载箱连接及稳固焊接;预埋护管、油管及位移测量杆等等,其耗费的时间与金钱绝不亚于单桩竖向抗拔静载试验。甚至将使“关键线路”时间延长,耗费更高),并且由于其预埋等特殊操作难度令这些准备工作更须小心翼翼,难保万无一失。而且最终仍未能直接获得实际结果,须经计算公式由相关参数条件取值(受地质情况差异影响较大)计算得出。及其在验收检测中形成样品特定的弊端。还有很多研究通过建立相关模型进行分析预测(推算)的方法。因桩不比砼试块,可在试验室大批量地有针对性地进行制作研究,建立专用曲线。因检测设备、条件、方法、时间、费用以及桩的承载力受制于多种不确定因素等原因,往往没有取得真正的极限承载力,特征值、设计值的计算也就谬之甚远。统计分析推算的方法应慎用。
不管研究哪种方法,不应仅追求简便、低廉、快速。更应注重准确可靠、真正优化。为使检测结果更准确有效,广东省建筑科学研究院的专家对单桩竖向抗拔静载试验进行了改进,并就测试措施做出了相当细致的说明。可见确认或推定单桩竖向抗拔极限承载力的检验测试,需要认认真真踏踏实实地做好各个环节的每项相关工作。就本例而言通过第三方的监测结果比对,验证了测试结果的准确性、可靠性相当高;提前计划并合理安排焊接、吊装等,耗时并不长(扣除下雨天气,平均为三天);以62元/吨计,检测费用约3万元/根桩。
总结单桩竖向抗拔检测的现状并不乐观,极限承载力的取得及其重要意义并未真正被广泛重视;自平衡法的可靠性和优越性还处于理想的想象状态,“特定”的样品检测,不宜验收应用,其他分析推算方法的受限性,不便推广使用;依公式估算的特征值与实测值差异相当大;传统的最直观、可靠的单桩竖向抗拔静载试验的重要作用不可替代,其耗时长、费用高只是误认和“偏见”3。