版权归原作者所有,如有侵权,请联系我们

[科普中国]-模糊优化控制

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

模糊控制简介

利用模糊数学的基本思想和理论的控制方法。在传统的控制领域里,控制系统动态模式的精确与否是影响控制优劣的最主要关键,系统动态的信息越详细,则越能达到精确控制的目的。然而,对于复杂的系统,由于变量太多,往往难以正确的描述系统的动态,于是工程师便利用各种方法来简化系统动态,以达成控制的目的,但却不尽理想。换言之,传统的控制理论对于明确系统有强而有力的控制能力,但对于过于复杂或难以精确描述的系统,则显得无能为力了。因此便尝试着以模糊数学来处理这些控制问题。1

“模糊”是人类感知万物,获取知识,思维推理,决策实施的重要特征。“模糊”比“清晰”所拥有的信息容量更大,内涵更丰富,更符合客观世界。

Zadeh创立的模糊数学,对不明确系统的控制有极大的贡献,自七十年代以后,一些实用的模糊控制器的相继出现,使得我们在控制领域中又向前迈进了一大步,下面本文将对模糊控制理论做一番浅介。

模糊逻辑控制模糊逻辑控制(Fuzzy Logic Control)简称模糊控制(Fuzzy Control),是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术。1965年,美国的L.A.Zadeh创立了模糊集合论;1973年他给出了模糊逻辑控制的定义和相关的定理。1974年,英国的E.H.Mamdani首次根据模糊控制语句组成模糊控制器,并将它应用于锅炉和蒸汽机的控制,获得了实验室的成功。这一开拓性的工作标志着模糊控制论的诞生。2

模糊控制实质上是一种非线性控制,从属于智能控制的范畴。模糊控制的一大特点是既有系统化的理论,又有大量的实际应用背景。模糊控制的发展最初在西方遇到了较大的阻力;然而在东方尤其是日本,得到了迅速而广泛的推广应用。近20多年来,模糊控制不论在理论上还是技术上都有了长足的进步,成为自动控制领域一个非常活跃而又硕果累累的分支。其典型应用涉及生产和生活的许多方面,例如在家用电器设备中有模糊洗衣机、空调、微波炉、吸尘器、照相机和摄录机等;在工业控制领域中有水净化处理、发酵过程、化学反应釜、水泥窑炉等;在专用系统和其它方面有地铁靠站停车、汽车驾驶、电梯、自动扶梯、蒸汽引擎以及机器人的模糊控制。

优化控制简介优化控制是指在给定的约束条件下,寻求一个控制系统,使给定的被控系统性能指标取得最大或最小值的控制。

随着科学技术的发展,目前智能控制已开始广泛应用。这种控制将人类的智能,例如把适应、学习、探索等能力引入控制系统,使其具有识别、决策等功能,从而使自动控制和优化控制达到了更高级的阶段。

条件一般说,进行优化控制必须要具备三个条件:

1、要给出系统的性能指标。

2、要给出约束条件。

3、要寻找优化控制的机制和方法。

由于在实际中情况是复杂多变的,进行优化控制不可能达到十全十美,因此优化控制只能是相对的或满意的控制,而难以做到最优控制。

基本原理为了实现对直线电机运动的高精度控制,系统采用全闭环的控制策略,但在系统的速度环控制中,因为负载直接作用在电机而产生的扰动,如果仅采用 PID 控制,则很难满足系统的快速响应需求。由于模糊控制技术具有适用范围广、对时变负载具有一定的鲁棒性的特点,而直线电机伺服控制系统又是一种要求要具有快速响应性并能够在极短时间内实现动态调节的系统,所以本文考虑在速度环设计了PID模糊控制器,利用模糊控制器对电机的速度进行控制,并同电流环和位置环的经典控制策略一起来实现对直线电机的精确控制。3

模糊控制器包括四部分:

(1)模糊化。主要作用是选定模糊控制器的输入量,并将其转换为系统可识别的模糊量,具体包含以下三步:

第一,对输入量进行满足模糊控制需求的处理;

第二,对输入量进行尺度变换;

第三,确定各输入量的模糊语言取值和相应的隶属度函数。

(2)规则库。根据人类专家的经验建立模糊规则库。模糊规则库包含众多控制规则,是从实际控制经验过渡到模糊控制器的关键步骤。

(3)模糊推理。主要实现基于知识的推理决策。

(4)解模糊。主要作用是将推理得到的控制量转化为控制输出。

系统集成1.网络化系统集成优化控制算法及其实现 网络化系统的集成优化控制方法就是将复杂系统的集成优化控制方法和网络自动化技术相结合,用来解决网络化复杂系统的优化控制问题,使其在难以建模、系统具有网络化和区域化等情况下,获得满意的优化控制结果。网络化系统集成优化控制方法的特点是引入了网络回路,在优化算法中引人了一些不确定因素,其优化控制更加依赖于网络系统和网络技术。网络化系统集成优化控制的关键技术在于动态系统优化与参数估计集成优化方法的实现和网络信息传输,借助于动态系统集成优化控制技术和网络自动化技术可实现网络化系统的集成优化控制,可以基于局域网或Intemet实现。基于局域网的网络化系统集成优化控制的示意图如下图所示。

2.网络化系统集成优化控制的特征 对一个动态优化控制方法,除了给出优化算法,还需要对其性能进行分析,只有这样才能保证优化方法的实施。网络化系统的集成优化控制方法的性能包括实时性、最优性、收敛性及其鲁棒性等。

1).实时性 在引人网络之前,针对跨区域的复杂系统,其优化控制的实施是很困难的,即使能够,其实时性也难以保证。网络化系统集成优化控制方法由于借助于计算机网络技术来实施集成优化控制,可以较好地解决跨区域复杂系统集成优化控制的实时性问题。

2).最优性 算法最优性是指在算法收敛的情况下,收敛解是否实际系统的最优解。对于网络化系统集成优化控制方法,在最优解存在且唯一等假设条件下,若算法收敛,则收敛解满足最优性必要条件,即所得优化解是实际系统的真实最优解。

3).收敛性 网络化系统集成优化控制方法需要实施,首先要求其优化控制算法是收敛的,收敛性就是研究算法收敛的条件,针对不同的算法其收敛性条件有所不同。对于网络化系统的集成优化控制方法,其优化的框架没有改变,只是引人了网络回路,利用算法映射及压缩映射原理,通过分析可以获得保证优化算法收敛的条件。

4).鲁棒性 网络化系统集成优化控制方法的鲁棒性问题是指在存在这样那样扰动的情况下,优化算法保持其收敛性,并收敛到最优解的能力。网络化系统的集成优化控制方法在不需要实际过程的精确数学模型的情况下可以获得实际系统的真实最优解,对模型的结构和参数具有较强的鲁棒性。

网络化系统的集成优化控制方法是一种基于网络环境下的集成优化控制方法,计算机网络的信息的安全问题必然影响到系统集成优化控制的实施。因此,对网络化系统集成优化控制中的信息安全问题及其对策进行分析和研究是十分必要的,只有这样才能保证网络化系统的集成优化控制的顺利实施。网络化系统集成优化控制中的信息安全问题可以借助于计算机网络的信息安全对策予以解决。

网络化系统的集成优化控制方法为解决区域性复杂系统的优化控制提供了一种新思路,该方法具有以下优越性:

1)由于网络化系统的集成优化控制方法本质是采用动态大系统的DISOPE递阶优化方法,这样就使得网络化系统的集成优化控制在不需要复杂系统的精确数学模型的情况下,就可以获得实际系统的真实最优解;

2)网络化系统的集成优化控制方法为解决跨区域性的复杂系统的优化控制提供了一种可靠的实现途径和形式。同时由于网络自动化技术的发展和网络信息传输实时性的提高,使得实时地解决区域性的复杂系统的优化控制成为可能。

变量选择与论域分割变量选择选择的控制变量要具有系统特性。控制变量选择是否正确,对系统的性能将有很大的影响。例如做位置控制时,系统输出与设定值的误差量就可以当做模糊控制器的输入变量。一般而言,可选用系统输出、输出变化量、输出误差、输出误差变化量及输出误差量总和等,作为模糊控制器的语言变量,具体如何选择还有赖于工程师对于系统的了解及其专业知识。因此,经验和工程知识在选择控制变量时扮演着相当重要的角色。

论域分割控制变量确定之后,接下来就是根据经验写出控制规则。在做成模糊控制规则之前,首先必需对模糊控制器的输入和输出变量空间做模糊分割。例如输入空间只有单一变量时,可以用三个或五个模糊集合对空间做模糊分割,划分成三个或五个区域,如图3.2(a)所示。输入空间为二元变量时,采用四条模糊控制规则,可以将空间分成四个区域,如图3.2(b)所示。模糊分割即将部分空间表示为模糊状态,图中斜线部分即为对明确的领域。

模糊分割时各领域间的重叠的程度影响控制的性能;一般而言,模集合重叠的程度并没有明确的决定方法,大都依靠模拟和实验的调整决定分割方式,不过有些报告提出大约1/3~1/2最为理想。重叠部份的大小意味着模糊控制规则间模糊的程度,因此模糊分割是模糊控制的重要特征。

函数型式Mamdani教授最初所用的模糊变量分为连续型和离散型两种型式,因此隶属度函数的型式也可以分为连续型与离散型两种。由于语言变量及相对应隶属度函数选择的不同,将形成许多不同的模糊控制器架构;下面将对各隶属度函数的型式加以介绍:

1. 连续型****隶属度函数

模糊控制器中常见的连续型隶属度函数有下列三种:

(1)吊钟形:如图3.3(a)所示,其隶属度函数可表示如下:

(2)三角形:如图3.3(b)所示,其隶属度函数可表示如下:

(3)梯形:如图3.3所示,其隶属度函数之表示法和三角形相类似。

在式中参数a为隶属度函数中隶属度为1时的x值,参数W为隶属度函数涵盖论域宽窄的程度。而图中NB,NM,NS,ZO,PS,PM,PB等是论域中模糊集合的标记,其意义如下所示:

NB=负方向大的偏差(Negative Big)

NM=负方向中的偏差(Negative Medium)

NS=负方向小的偏差(Negative Small)

ZO=近于零的偏差(Zero)

PS=正方向小的偏差(Positive Small)

PM=正方向中的偏差(Positive Medium)

PB=正方向大的偏差(Positive Big)

图上将模糊集合的全集合正规化为区间〔-1,1〕,在模糊控制上,使用标准化的模糊变量,其全集也常正规化,这时的正规化常数(亦称为增益常数),也是在设计模糊控制器时必须决定的重要参数。

2. 离散型****隶属度函数

Mamdani教授除了使用连续型全集合之外,也使用了由13个元素所构成的离散合。由于用微处理机计算时使用整数比用〔0,1〕之间的小数更方便,模糊集合的隶属度均以整数表示,如表3.1所示。

模糊控制理论发展之初,大都采用吊钟形的隶属度函数,而近几年几乎都已改用三角形的隶属度函数,这是由于三角形隶属度函数计算比较简单,性能与吊钟形几乎没有差别。

控制规则控制规则是模糊控制器的核心,它的正确与否直接影响到控制器的性能,其数目的多寡也是衡量控制器性能的一个重要因素,下面对控制规则做进一步的探讨。

规则来源模糊控制规则的取得方式:

(1) 专家的经验和知识

模糊控制也称为控制系统中的[4]专家系统,专家的经验和知识在其设计上有余力的线索。人类在日常生活常中判断事情,使用语言定性分析多于数值定量分析;而模糊控制规则提供了一个描述人类的行为及决策分析的自然架构;专家的知识通常可用if….then的型式来表述。

藉由询问经验丰富的专家,获得系统的知识,并将知识改为if….then的型式,如此便可构成模糊控制规则。除此之外,为了获得最佳的系统性能,常还需要多次使用[5]试误法,以修正模糊控制规则。

(2) 操作员的操作模式

现在流行的专家系统,其想法只考虑知识的获得。专家可以巧妙地操作复杂的控制对象,但要将专家的诀窍加以逻辑化并不容易,这就需要在控制上考虑技巧的获得。许多工业系统无法以一般的控制理论做正确的控制,但是熟练的操作人员在没有数学模式下,却能够成功地控制这些系统:这启发我们记录操作员的操作模式,并将其整理为if….then的型式,可构成一组控制规则。

(3) 学习

为了改善模糊控制器的性能,必须让它有自我学习或自我组织的能力,使模糊控制器能够根据设定的目标,增加或修改模糊控制规则。

规则型式模糊控制规则的形式主要可分为二种:

(1) 状态评估模糊控制规则

状态评估(state evaluation)模糊控制规则类似人类的直觉思考,它被大多数的模糊控制器所使用,其型式如下:

Ri:if x1 is Ai1 and x2 is Ai2 …. and xn is Ain

then y is Ci

其中x1,x2,…….,xn及y为语言变量或称为模糊变量,代表系统的态变量和控制变量;Ai1,Ai2,….,Ain及Ci为语言值,代表论域中的[6]模糊集合。该形式还有另一种表示法,是将后件部改为系统状态变量的函数,其形式如下:

Ri:if x1 is Ai1 and x2 is Ai2 …. and xn is Ain

then y=f1(x1,x2,…….,xn)

(2)目标评估模糊控制规则

目标评估(object evaluation)模糊控制规则能够评估控制目标,并且预测未来控制信号,其形式如下:

Ri:if(U is Ci→(x is A1 and y is B1))then U is Ci

规则流程实际应用模糊控制时,最初的问题是控制器的设计,即如何设计模糊控制法则。到目前为止模糊控制还没能像传统的控制理论一样,借由一套发展完整的理论推导来设计。下面简单介绍一下其设计概念:

图3.4所示为单输入和单输出的定值控制时间响应图,若使用状态评估模糊控制规则的形式,前件部变量为输出的误差E和在一个取样周期内E的变化量CE,后件部变量为控制器输出量U的变化量CU。则误差、误差变化量及控制输出变化量的表示为:

其中E表误差,R表设定值,Y表系统输出,U表控制输出,下标n表在时刻n时的状态。由此可知,误差变化量CE是随输出Y的斜率的符号变号,当输出上升时,CE0。

本文所设计的模糊控制器之输出输入关系为:

E,CE→CU

在一般控制的计算法上称为速度型,这是由于其输出为U对时间的微分,相当于速度的CU。在构造上也可采用以U为后件部变量的位置型,但前件部变量必需改用E的积分值。

由于由E与CE推论CU的构造中,CU与E的关系恰巧相当于积分关系U(t)=Ki∫E(t)dt,而CU与CE的关系相当于比例关系U(t)=KpE(t)的缘故,所以又称为Fuzzy PI控制。

设计模糊控制规则时,是在所设想对控制对象各阶段的反应,记述采取哪一种控制比较好;首先选择各阶段的特征点,记录在模糊控制规则的前件部,然后思考在该点采取的动作,记录在模糊控制规则的后件部。例如在图3.6中,在第一循环之a1点附近,误差为正且大,但误差变化量几乎是零,可以记为“E is PB and CE is ZO”在此点附近需要很大的控制输出,记为”CU is PB”;同样地,对于b1点、c1点、d1点等的附近,可分别得到如下的控制规则:

a1:If E is PB and CE is ZO then CU is PB

b1:If E is ZO and CE is NB then XU is NB

c1:If E is NB and CE is ZO then CU is NB

d1:If E is ZO and CE is PB then CU is PB

在第二循环之a2,b2等之附近,其E和CE的绝对值比a1,b1点中之值相对减少,所以其CU值相对地也较小,其控制规则如下:

a2:If E is PM and CE is ZO then CU is PM

b2:If E is ZO and CE is NM then CU is NM

表3.2为依上述程序所构成的13条控制规则,其中纵列为E值,横列为CE值,表中所列之值为控制输出变化量CU值。由表3.2可知规则数最多可为49条,此表只使用了其中13条控制规则,设计者可依实际需要自行加减规则之数量,如19条、31条等等(表3.3,3.4所示),以改系统之响应。

缺点1.模糊控制的设计尚缺乏系统性,这对复杂系统的控制是难以奏效的。难以建立一套系统的模糊控制理论,以解决模糊控制的机理、稳定性分析、系统化设计方法等一系列问题;

2.如何获得模糊规则及隶属函数即系统的设计办法,完全凭经验进行;

3.信息简单的模糊处理将导致系统的控制精度降低和动态品质变差。若要提高精度就必然增加量化级数,导致规则搜索范围扩大,降低决策速度,甚至不能进行实时控制;

4.如何保证模糊控制系统的稳定性即如何解决模糊控制中关于稳定性和鲁棒性问题还有待解决。