简介
能收到要求的伏尔、伏塔克和塔康的可用信号的最低航路高度。在航空中,最小接收高度(MRA)是气道段上最低的高度,可以确保飞机能够接收诸如VOR或NDB之类的导航辅助信号。 通常,导航设备之间的距离越大,MRA越高。 随着GPS卫星导航的可用性,MRA变得越来越不重要,这使得飞机能够一直到达地面的导航指导。
伏尔概述伏尔导航系统(omnidirectional range—VOR)是空中导航用的甚高频全向信标。这种系统能使机上接收机在伏尔地面台任何方向上和伏尔信号覆盖范围内测定相对于该台的磁方位角。伏尔导航系统出现于20世纪30年代,是为了克服中波和长波无线电信标传播特性不稳定、作用距离短的缺点而研制的导航系统,是高频(108~118兆赫)视线距离导航系统。飞机飞行高度在 4400米以上时,稳定的作用距离可达200公里以上。1
发展概况早期的飞机主要靠目视导航。20世纪20年代开始发展仪表导航。飞机上有了简单的仪表,靠人工计算得出飞机当时的位置。30年代出观无线电导航,首先使用的是中波四航道无线电信标和无线电罗盘。40年代初开始研制超短波的伏尔导航系统和仪表着陆系统。50年代初,开始采用惯性导航系统。50年代末出现多普勒导航系统。60年代初开始使用远程无线电罗兰C导航系统,作用距离达到2000km。为满足军事上的需要,还研制出塔康导航系统,后又出现伏尔塔康系统及超远程奥米加导航系统,作用距离已达到10000km。1963年出现卫星导航。70年代以后发展全球定位导航(GPS)系统。
系统组成一种近程无线电导航系统,全名为甚高频全向方位导航系统。1950年被规定为国际标准民用导航系统。它由机载甚高频全向信标接收机、显示器和地面甚高频全向方位导航台组成。导航台发射以30转/秒旋转的心脏线方向图(见飞行器天线),在机载接收机输出端产生30赫的正弦波,其相位随飞机相对导航台的位置而变化,称为可变相位信号。与此同时,导航台还发射一个以固定30赫参考频率调制的全向信号。在机载接收机输出端又得到一个不变相位的30赫正弦波,称为基准相位信号。在地面导航台中使这两个30赫低频信号的相位在磁北子午线上相同。比较机载接收机输出的两个信号的相位,可确定地面导航台相对飞机的方位角,并将这方位角显示在显示器上。这就像以导航台为中心向四周辐射无限根直线,每一根线代表一个角度值。机载接收机和显示器的作用相当于确定和显示飞机处于那根线上。如果与测距器(DME)组成伏尔-DME标准近程导航系统,还可测出飞机至导航台的距离,据此可确定飞机在空间的位置。还可以按两个导航台相对飞机的方位角来定位,但须同时接收两个不同导航台的信号。伏尔导航系统工作于甚高频(112~118兆赫),抗干扰能力较强,测向精度一般为±1°,机载设备简单、轻便。伏尔导航系统的缺点是发射电波受视线限制和测向精度受场地影响较大。多普勒-伏尔导航系统就能够减少场地对测向精度的影响(见无线电导航)。2
伏尔导航系统的基站拥有两组天线系统,一组将30 Hz的信号调制到载波上并进行全向广播。另一组天线为有向天线,以每秒30圈的频率转动,该天线发出的载波上也调制有一个30 Hz的信号,但此信号的相位随着天线转过的角度而改变,当指向天线指向正北时,两条天线发出的30 Hz信号的相位刚好相同。用户机通过对比接收到的两组信号的相位差.即可得出自身与基站的方向关系。
原理伏尔导航系统通过比较两个30赫信号的相位来确定飞机对伏尔台的方位。一个30赫信号是固定的基准相位信号,先在9960赫副载频上以 ±480赫频偏调频,用副载频再对甚高频调幅,以全向方式辐射。一个30赫信号是可变相位信号,用两对正交奥尔福德环形天线在双边带上辐射旋转∞场型。天线系统两种辐射输出合成为旋转30次每秒的心脏形场型。载频上还有以1020赫调幅的莫尔斯码识别信号和话音。在接收端,外来信号经放大、调幅检波后分成三路:一路经副载频滤波、限幅、鉴频和30赫滤波后输入比相器,这是固定相位信号;一路经30赫滤波直接至比相器,这是可变相位信号;再一路是莫尔斯识别码和话音输出。比相器对两个相位信号比相,得出飞机对伏尔地面台的磁方位角。
性能与特点编辑
(1)性能
伏尔导航系统应用在航路上和终端区。在航路上,它构成航道和航道网的基准,也是仪表飞行时的必要装备。航路上使用的伏尔台的辐射功率为 200瓦,作用距离随飞行高度而变化。在小高度上仅30海里,大高度上最远可达200海里。终端区伏尔台用于引导飞机进场,辐射功率50瓦,作用距离25海里以上。终端伏尔台与仪表着陆系统中的航向信标使用相同频段,即108~112兆赫,装备仪表着陆系统的机场不再装备伏尔导航系统。3
(2)优点
伏尔导航系统与地美依导航系统合装在一起成为极坐标导航方式,既提供方位,又提供距离。地美依导航系统与塔康导航系统的测距部分完全相同,伏尔导航系统与塔康导航系统合装在一处,就是伏尔塔克导航系统,属于军用和民用共用系统。
伏尔导航系统的计算准确度为±3.9°(95%概率),实际准确度为±4.5°(95%概率)。伏尔用于监测站监视信号状态。现代伏尔地面系统由遥测遥控站进行管理,机上设备带有视觉告警装置。
(3)缺点
伏尔台发射信号存在多径反射干扰的缺点,对选择设台场地有一定要求。多普勒伏尔导航系统对于环境要求有所降低。为了提高伏尔导航系统的准确度,可改用多瓣伏尔导航系统,即精密伏尔导航系统。现代伏尔地面系统正以固态电子器件取代电子管。
伏塔克伏塔克,又称伏尔塔康导航系统,是同时使用伏尔和塔康的导航设备,用塔康的测距功能和伏尔的测向功能来提供距离方位信息。
伏塔克(甚高频全向信标和战术空间导航系统)和伏尔测距器(甚高频全向信标侧距设备)是美国国家航空航天系统的基本导航设备。这种现有的真空管设备维护费用很高,为了确保这项服务延续到1995年以后,1985年正在把这种设备替换掉。所替换的新设备采用现代化的技术,以提供较高的可靠性,提供远距离维护和监控能力,改善系统的可用性。它引入的微型计算机技术,容许远距离维护和控制系统用于所有地面站的控制功能和自动检测试验,以及远距离判断和倾向性试验,从而更进一步加强设备维护。所得到的全固态化伏尔塔康系统使其延长了20年寿命,并降低了寿命期间的费用。4
塔康概述“塔康”(TACAN-Tactical Air Navigation System)是战术空中导航系统的简称,由美国于1955年研制成功,后被法国、德国、英国、加拿大、日本、韩国等广泛使用。主要用于为舰载机提供从几十千米到几百千米距离范围内的导航,保障飞机按预定航线飞向目标,机群的空中集结,以及在复杂气象条件下引导飞机归航和进场等。
塔康是一个极坐标无线电空中导航系统,工作频率为962-1213兆赫的特高频(UHF)。每间隔1兆赫划分为一个频道,共有126个分立频道,舰载设备与机载设备采用不同的发射频率。飞机通过向舰艇信标发出询问信号,得到回复后通过计算得出机-舰间的距离;以及通过探测舰艇信标发出的无线电波形,得出飞机相对于舰艇的准确位置。5
塔康系统的国内外研究现状及分析塔康系统是在1948至1951年间由美国研制的,1954年投入装备,几十年来该系统发展很快。目前全世界已经有三十多个国家大量装备该系统,它早已成为美国和北约的军事标准系统,是世界上普遍使用的十几种无线电导航系统之一。1983年美国著名导航专家S.H多丁顿预计全世界装备的塔康机载设备约有一万七千台,80年美国《联邦无线电导航计划》公布,仅美国军方拥有的塔康地面台和舰载台就有340多个。
国外塔康系统设备的发展概况如下:塔康机载设备,第一代,1958年以前,主要技术特点:全电子管、机电调谐,测量系统为模拟式;第二代,1958~1962年,主要技术特点:设备大部分晶体管化,其余类似第一代;第三代,1962~1965年,主要技术特点:除发射机功放外全部晶体管化,机电调谐,数字化测量;第四代,1965~1975年,主要技术特点:固态、集成、数字化,固态调谐方式,x, y波道;第五代,1970年以后,主要技术特点:除采用第四代特点外,测量部分采用微处理器,有的发射极末级采用晶体管功率合成器。6
地面信标台,第一代,1960年以前,主要技术特点:全电子管或部分晶体管,126个X波道,机扫天线;第二代,1960~1970年,主要技术特点:除发射极末级功放外,基本上全固态化,采用数字技术和中小规模集成电路,基本上是机扫天线,X, Y波道;第三代,1970年以后,主要技术特点:与第二代相比主要区别是采用电扫天线,且集成度高。
国内塔康系统概况如下: 六十年代中期我国研制出第一批性能样机401/402,七十年代初研制了第一代定型产品401/402甲,于74年通过国家级定型,83年底II型设备HJD-II,620又通过了国家定型,在多年研产过程中,不断研制出新技术,能够独立设计、生产全套塔康设备,且在1GC频率合成器,电调预选器、宽带功放、电扫天线及数字测距等方面都接近或达到世界先进水平。
2001年1月,我国独立自主设计研制的“北斗一号”第二颗导航卫星发射成功,一种区域性卫星导航定位系统进入试验阶段。“北斗一号”工程利用两颗地球同步卫星为用户提供快速定位,简短数字报文通信和授时服务。它使我国成为世界上第三个具有卫星定位与导航系统的国家。现今已建成的“北斗一号”系统是我国独立自主建设的卫星定位系统,能覆盖我国整个大陆及一部分沿海区域,有相当的用户数和定位精度,对路上和海上导航定位具有一定意义。
组成塔康导航系统是一种近程极坐标式无线电导航系统。由地面信标台(地面台)和记载设备组成。地面信标台可架设于机场、航路点或航空母舰上,机载塔康设备安装在飞机上与塔康信标配合工作,其组成原理如图所示。它与航向系统等交联后能够为350千米-400千米范围内飞机连续提供飞机相对于地面信标台以磁北为基准的全向方位角和斜距,从而确定飞机所处地理坐标即飞机位置。主要完成导航方式下测量飞机相对于地面信标台的方位和距离,在着陆状态下与地面着陆信标台配合工作,确定至着陆点的距离及预定航向偏差、预定下滑道偏差;在空中会和方式下,确定飞机间距离和飞机相对方向,即飞机间同时测量距离和方位。测向原理与伏尔导航系统相似,测距原理与测距器相同,工作频段为960-1215兆赫。系统测距采用询问应答方式,测角是通过基准脉冲信号和脉冲包络信号之间的相位关系来实现的。当飞机位于塔康地面台不同方位时,其机载塔康设备所接收到的基准信号和脉冲包络信号之间存在着不同的相位关系,经过信号处理就可以确定出飞机相对于塔康地面台的方位角。
地面台的天线是圆筒形的,是由中心天线阵列和内外调制圆筒组成,它在水平方向辐射场形成一个心脏形图,上附有九瓣调制,当它以15Hz匀速旋转时,在它周围空间的任意一点形成一个其振幅变化规律以15Hz为频率的正弦波,这样,将以地面台为中心的周围空间化为一个15Hz正弦波360度的相位空间。由于又叠加了9个波瓣,即相当于将15Hz正弦波360度的相位空间分成9个40度空间,每个40度相位空间相当于一个135Hz正弦波360度的相位空间。这样使得地面台发射的信号又增加15Hz和135Hz可变方位信息。方位测量就是机载设备接收地面台发的方位信号为主,即主、辅基准信号及15Hz和135Hz调制信号,取它们合成包络的相位差而换算出来。
从飞机上每秒发射30对、间隔为12微秒的询问脉冲对(成对发射的脉冲),地面台收到询问脉冲对后发射同样间隔的回答脉冲对。在飞机上把收到回答脉冲对的时间与询问脉冲对的时间相比较,得出脉冲电波在空间传播的时间,从而得到飞机到地面台的距离,并加以显示。地面台天线发射电波的方向图呈有 9个波瓣的心脏形,并以900转/分转动。飞机接收到的脉冲信号是调幅形式的,这一调幅包络包括由旋转心脏形方向图产生的15Hz方位信号和由9个波瓣旋转产生的135赫方位信号,这两个信号的相位与地面台相对飞机的空间方位有关。为测定相位需要有基准信号,因此当心脏形方向图转过正东方向时,发射一组由12个脉冲对组成的基准脉冲信号,当8个波瓣(除去与心脏形最大值重合的那个波瓣)中每一个的最大值转过正东方向时,还发射一组由6对脉冲组成的辅助基准脉冲信号。比较15Hz方位信号和基准脉冲信号的相位,得到地面台相对飞机的粗略方位,用它来消除精测方位时的多值性。比较 135Hz方位信号和辅助基准脉冲信号的相位即得到地面台相对飞机精确的方位值。
定位原理塔康定位的基础是测距和测角。在国际民航目前采用的标准近程导航中采用两套独立的系统来分别完成。测距利用DME测距系统,它和塔康测距功能的信号体制相类似,设备之间可以兼容;测角采用VOR(或DVOR)系统,其测角方法与伏尔测角功能相类似,但信号体制根本不同,不能兼容。DME和VOR是两个不同频段,不同信号体制,相互独立的单功能系统。而塔康测距、测角则不然,它是在统一的频道和信号体制基础上来实现的。
塔康系统距离测量利用二次雷达原理,机载TACAN设备发射询问脉冲,地面台收到询问脉冲后经固定延时再发距离回答脉冲,机上设备取询问脉冲和回答脉冲之间的延时进行计算。