版权归原作者所有,如有侵权,请联系我们

[科普中国]-V形机翼

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

简介

V形翼即前掠翼,是具有较大前掠角(大于15°)的机翼。与后掠翼相比,具有更好的飞行品质。但当迎角增大时会引起机翼的弯扭发散,需较大的机翼刚度,自重也随之增加。1

V形翼优点与后掠翼相比,前掠翼主要有四大优势:

1、结构优势。前掠翼结构可以保障机翼与机身之间更好地连接,并且合理地分配机翼和前起落翼所承受的压力。这些优势用其它方法很难达到或者不可能达到,它大大提高了飞机在机动时、尤其是在低速机动时的气动性能。此外,前掠翼的结构设计,还可使飞机的内容积增大,为设置内部武器舱创造了条件,同时也大大提高了飞机的隐身性能。

2、机动优势。前掠翼技术可使飞机在亚音速飞行时具有非常好的气动性能,从而大大提高其在仰角状态下的机动性。若前掠翼布局与推力矢量控制系统综合使用,还可使其在空战中更具优势,其近距空战机动能力将成倍地提高。

3、起降优势。与相同翼面积的后掠翼飞机相比,前掠翼飞机的升力更大,载重量增加30%,因而可缩小飞机机翼,降低飞机的迎面阻力和飞机结构重量;减少飞机配平阻力,加大飞机的亚音速航程;改善飞机低速操纵性能,缩短起飞着陆滑跑距离。据美国专家计算,F-16战斗机若使用前掠翼结构,可提高转变角速度 14%,提高作战半径34%,并将起飞着陆距离缩短35%。

4、可控优势。使用前掠翼结构可以提高飞机低速度飞行时的可控性,并能在所有飞行状态下提高空气动力效能,降低失速速度,保证飞机不易进入尾旋,从而使飞机的安全可靠性大大提高。2

V形翼缺点现代战机大都采用薄翼型,使得机翼的抗扭转能力很差。前掠机翼在气流作用下所产生的扭矩使得机翼迎角增加,而增加的迎角将带来更大的扭矩,以至于导致机翼因为扭转刚度不足而折断即更容易发生气动弹性发散。若采用常规金属材料来制作机翼必将付出超重的代价,以至于气动性能得不到发挥。

前掠翼飞机在大迎角时首先从翼根部分开始失速,它不会影响飞机纵向、横向的平衡和操纵,失速特性比后掠翼飞机好得多。因此前掠翼飞机低速性能好,可利用的升力比较大。其次,由于失速特性好,前掠翼不必像后掠翼那样带负扭转,可以根据阻力最小的要求控制机翼升力沿展向分布,从而保证机翼有更高的气动效率。

前掠翼的严重问题是在结构方面,沿结构曲线方向的弯曲变形会使外翼沿气流方向增大迎角,增加外翼部分升力,进一步增加机翼的弯曲变形。在足够大的速度下,这种现象会形成恶性循环,直到使机翼弯曲折断。这个现象称弯扭发散(见图前掠翼飞机的弯扭发散)。开始弯扭发散的速度称弯扭发散(临界)速度。为了提高前掠翼的弯扭发散速度,需增加机翼抗弯刚度,这就会导致机翼结构重量的增加,以致完全抵消采用前掠翼带来的好处。这是前掠翼飞机很少被采用的主要原因。70年代以后,有人提出用复合材料结构的弯扭变形耦合效应克服前掠翼发散的缺点,也就是通过布置不同纤维方向的铺层,使机翼的弯曲变形引起附加的负扭转变形,从而抵消由升力引起的前掠翼正扭转。这样可以得到不发散而重量轻的前掠机翼,前掠翼飞机遂又引起人们的注意。3

发展历史1945年2月,德国容克斯公司首飞一种名为Ju-287的机翼前掠的四发喷气轰炸机,在这架飞机上使用了前掠角为15°角的机翼,开创了前掠翼飞行器的先河。但前掠翼产生弯曲变形时会使外翼迎角增大,从而使外翼升力增大,造成机翼弯曲变形加剧,在一定(临界)速度下,这种现象会形成恶性循环,直到使机翼折断。为了提高临界速度,需要付出增加结构重量等代价。所以,前掠翼虽和后掠翼同时提出,却很少被采用。

前掠机翼技术是在第二次世界大战时纳粹德国的发展的,并首次在汉斯·沃克领导设计的Ju-287轰炸机上使用。1943年1月,美、英联军开始联合对德国本土进行轰炸。1943年中,联军大量的P-51及加装副油箱的P-47战斗机用于为轰炸机护航,德国空军在对其拦截的空战中,战斗机损失率骤然大增。在东线,1943年下半年库尔斯克战役结束后,德国空军也丧失了制空权,遗留有20%的战斗机应付战局,加上苏联空军大量装备拉-5和雅克-9战斗机,所以德空军很难对苏联境内实施战略轰炸。在这种背景下,希特勒就提出了研制一种"能超越盟军任何一种战斗机"的轰炸机,Ju-287就这样出笼了。

Ju-287在最初设计时采用的是后掠翼,但由于后掠翼使飞机在低速飞行时的稳定性较差,这必然会影响轰炸机的投弹精度。综合考虑的结果,最终选择了前掠翼。Ju-287共开发了三种型号,分别为v1,V2、V3。德军战败后,苏军在汉斯·沃克小组的配合之下,在德国本上完成了V2的装配工作,后又制造了V3型轰炸机,并于1945年夏进行了试飞。

1947至1948年,苏联对LL-3前掠翼实验机进行了测试,该机以火箭为动力,最大速度为1150公里/小时(0.95马赫)。穿音速(未达音速0.8倍为次音速、音速0.8~1.2倍上下为穿音速、音速1.2~5倍为超音速、超过音速五倍以上为高超音速)因为结构上的问题无法解决,在其后数十年间,苏联没有什么进展,美国也不例外。

进入20世纪70年代,两项科研成果给前掠翼飞机的研究带来了转机,这就是复合材料技术的进步和机翼刚性分布计算机计算法的应用。前者为前掠翼提供了更轻、更强的结构,可使机翼在扭曲时不至于折断,后者则使机翼在面临离散效应时能够只弯曲而不扭曲,这就解决了因机翼扭曲而造成的负面气动效应问题。在此基础上,苏联改进了以米格-23和苏-27作为研究对象的前掠翼风洞模型设计,为进行前掠翼战斗机设计的苏霍伊设计局提供了不少宝贵的试验数据和经验。同时,苏霍伊设计局自己也制造了1架前掠翼滑翔试验机,用以验证大迎角飞行能力以及失速、螺旋等特性。试验结果表明,前掠翼战斗机维持大迎角飞行的时间可达到苏-27的3至4倍,而苏-27则具有相当出色的大迎角飞行性能。

1970年代以后,出现了利用复合材料结构的弯扭变形耦合效应(即通过布置不同纤维方向铺层)克服上述现象,同时由于变弯度技术、放宽静稳定度技术和电传操纵控制技术等的发展,前掠翼飞机遂又受到航空界的重视。1984年12月14日美国X-29A前掠翼验证机首次升空。

美国在研制F-16时电曾提出了一个前掠翼方案。据他们估计,这种方案与F-16相比,其转弯角速度可增加14%,作战半径可增大34%,起降距离可减少35%。1984年12月24日,美国格鲁曼公司的X-29成功首飞,比较成功地解决了前掠翼飞机的"气动弹性发散"问题,虽然它并没有完全解决前掠翼在超音速时的发散问题,但它在航空基础领域和先进技术方面做出了大量的积累,为美国航空的建设带来了一笔宝贵的财富。

随着材料技术的发展,刚度更高,质量更轻的材料必将能为解决前掠翼的"气动弹性发散"问题奠定基础,前掠翼也将会得到推广、流行。4