基本概念
不相关变量是指两个变量的相关系数为0的变量,是相互间没有线性关系的变量。变量间的关系主要有互不相容、对立、独立和互不相关。
互不相容:若两事件A与B不能同时发生,则称A与B是互不相容事件,或称互斥事件,记作A∩B= Φ。
对立:在互不相容的基础上再加一个条件,P(A)+P(B)=1。通俗的说所谓对立事件,有你没我,有我没你,咱俩之间必须有一个。
独立:设A,B是两事件,如果满足等式P(AB)=P(A)P(B),则称事件A,B相互独立,简称A,B独立。
不相关:若随机变量 X 和 Y 的相关系数 r(X,Y)=0,称 X 与 Y 不相关,众所周知,独立变量一定不相关(自然要求方差有限),不独立变量也可以不相关,单位圆内的均匀分布即其一例。
判定方式两个变量是不是相关变量需要用相关系数r来判定,相关系数是用以反映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度1。相关系数r的计算方式如下:
即:
其中Cov(X,Y)为X与Y的协方差,Var[X]为X的方差,Var[Y]为Y的方差。
当r=0时,称X,Y为不相关变量。
独立与不相关的关系独立和不相关从字面上看都有“两个东西没关系”的意思,但两者是有区别的。相关性描述的是两个变量是否有线性关系,独立性描述的是两个变量是否有关系。不相关表示两个变量没有线性关系,但还可以有其他关系,也就是不一定相互独立。下面是独立和不相关的关系:
(1)X与Y独立,则X与Y一定不相关。
(2)X与Y不相关,则X与Y不一定独立。
证明:
(1)由于X与Y独立,所以f(xy)=f(x)f(y),(f为概率密度函数)
于是:E(XY)=∫∫f(xy)dxdy
=∫∫[f(x)*f(y)]dxdy
=∫f(x)dx*∫f(y)dy
=E(X)E(Y)
所以:E(XY)=E(X)E(Y),即X,Y不相关。
(2)反例:
X=cost,Y=sint,其中t是(0,2π]上的均匀分布随机变量,易得X和Y不相关,因为:
E(XY)=E(cost sint)=(1/2π)*∫sint cost dt = 0
E(X)=(1/2π)* ∫cost dt = 0
E(Y)=(1/2π)* ∫sint dt = 0
所以E(XY)=E(X)E(Y),但是他们是不独立的。
因为:X和Y各自的概率密度函数在(-1,1)上有值,但是XY的联合概率密度只在单位圆内有值,所以f(XY)不等于f(x)*f(y),两者不独立。