简介
为解决实际问题中大维数线性代数方程组的求解问题,提出了许多迭代法。但大多数迭代法不是对各类线性方程组都有收敛性。在解题时,对原方程组矩阵作一根本的变换,从而可能使条件数变坏,也可能破坏了变换前后方程组的等价性,以及丧失使原方程组的对称性等。通过对GS法进行改进,从而产生了逐次超松弛(SOR)迭代法。
SOR方法的思路为:如果能够简单有效地确定单个样本加入样本集后对训练结果的影响,一方面,出现新的样本时可以利用原来的一训练结果而不必重新开始;另一方面,让训练样本逐个进入样本集可以简化寻优过程,提高算法速度。这实际上是将样本集中的样本数减少到一个。
对于逐次超松弛迭代法,松弛因子的选取对算法的收敛速度有很大影响,通常对于方程组Ax=Y,若A为正定矩阵,则当0