版权归原作者所有,如有侵权,请联系我们

[科普中国]-连续分离

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

连续分离是利用混合物中各组分在物理性质或化学性质上的差异,通过适当的装置或方法,使各组分连续分配至不同的空间区域或在不同的时间依次分配至同一空间区域的过程。该过程至少经过两次分离。分离的方法有很多,比如盐析、萃取分离法(包括溶剂萃取、胶团萃取、双水相萃取、超临界流体萃取、固相萃取、固相微萃取、溶剂微萃取等)、膜分离方法(包括渗析、微滤、超滤、纳滤、反渗透、电渗析、膜萃取、膜吸收、渗透汽化、膜蒸馏等)、层析方法(离子交换层析、尺寸排阻层析、疏水层析、固定离子交换层析、亲和层析等)。多组分精馏,特殊精馏技术,吸附与离子交换,薄层色谱、柱色谱和纸色谱,结晶。

连续分离可以是组分离;也可以是单一物质的分离。组分离有时也称为族分离,它是将性质相近的一类组分从复杂的混合物体系中分离出来。例如,石油炼制过程中将轻油和重油等一类物质进行分离就属于族分离。单一物质的分离是将某种物质以纯物质的形式从混合物中分离出来,比如从乳酸发酵液中获得纯度较高的乳酸。连续分离过程中,是多种操作方式或者同一分离方法的反复使用的过程,直至得到想要的物质。

在分离中常常涉及如下几个概念:

(1)富集(enrichment)是指在分离过程中使目标化合物在某空间区域的浓度增加。

(2)浓缩(concentration)指将溶液中的一部分溶剂蒸发掉,使溶液中存在的所有溶质的浓度都同等程度的提高的过程。

(3)纯化(purification)是通过分离操作使目标产物纯度提高的过程,是进一步从目标产物中除去杂质的过程。

连续色谱分离技术连续色谱分离技术是基于不同物质在由固定相和流动相构成的体系中具有不同的分配系数,在采用流动相洗脱过程中呈现不同保留时间,从而实现连续分离。

膜分离技术膜分离技术是一项高新技术,虽然二百多年以前人们便已发现膜分离现象,但直到20世纪60年代开始,由于美国埃克森公司第一张工业用膜的诞生,膜技术才进入快速发展时期。膜技术的发展虽然不长,但因为膜技术独具优越性,目前在工业中已得到广泛的应用,例如在环保、水处理、化工、冶金、能源、医药、食品、仿生等领域。

膜分离技术是指借助于外界能量或化学位差的推动,通过特定膜的渗透作用,实现对两组分或多组分混合的液体或气体进行分离、分级、提纯以及浓缩富集的技术。膜分离技术具有过程简单、无二次污染、分离系数大、无相变、高效、节能等优点,操作无需特许条件,可在常温下进行,也可直接放大。对于性质相似组分的分离,该技术具有独特优势,而且可以与常规分离方法联合应用。其种类按材料性质,可以分为高分子膜、金属膜、无机膜。根据结构可分为均质膜、非对称膜、复合膜、离子交换膜、荷电膜、液膜。按成膜方法不同,分为三类,微孔膜( 即核孔膜)、控制拉伸膜和海绵状结构膜。1

以微滤膜分离技术为代表,该技术始于十九世纪中叶,是以静压差为推动力,利用筛网状过滤介质膜的”筛分"作用进行分离的膜过程。它主要用于从气相和液相悬浮液中截留微粒、细菌及其它污染物,以达到净化、分离和浓缩等目的。实施微孔过滤的膜称为微滤膜。微滤膜是均匀的多孔薄膜,厚度在90~150 μm左右,过滤粒径在0.025~10 μm之间,操作压在0.01~0.2MPa。到目前为止,国内外商品化的微滤膜约有13类,总计400多种。流体通过膜的推动力主要是压力差、分压差、浓度差、电位差、化学位差等,选择性和通量是膜分离的重要技术指标。2

微滤膜的主要优点为:

①孔径均匀,过滤精度高。能将液体中所有大于制定孔径的微粒全部截留;

②孔隙大,流速快。一般微滤膜的孔密度为107孔/cm 2,微孔体积占膜总体积的70%~80%。由于膜很薄,阻力小,其过滤速度较常规过滤介质快几十倍;

③无吸附或少吸附。微孔膜厚度一般在90~ 150μm之间,因而吸附量很少,可忽略不计。

④无介质脱落。微滤膜为均一的高分子材料,过滤时没有纤维或碎屑脱落,因此能得到高纯度的滤液。

磁分离技术磁分离技术是指利用元素或组分磁势的差异,借助外磁场对物质进行处理,从而达到强化分离过程的一种分离技术。根据外磁场源的不同,磁分离可以分为永磁分离、电磁分离、超导磁分离;根据应用环境的不同可将其分为湿式磁分离和干式磁分离;根据磁反应器的不同可分为传统磁分离、磁盘分离、高梯度磁分离和开梯度磁分离。因其快速高效的分离效果,特别是随着超导磁体技术与高梯度磁技术的发展,磁分离已在尾矿分选、钢渣回收、高岭土脱色等领域得到了广泛的应用,并且近二、三十年来,磁分离在生物技术、水处理、水生态修复等领域得到了众多的研究和应用。3