作为治疗癌症的一种重要方式,化疗已经应用了几十年,时至今日,化疗依然是治疗癌症的重要手段。化疗药物紫杉醇为何可以杀死癌细胞?化疗过后病人为什么都会出现脱发现象?秘密都在于细胞内一种重要的结构---微管。
微管是什么?
类似于人体中具有骨骼系统,在大部分高等动物细胞中分布着很多由蛋白纤维交织而成的立体网络体系,这些被称作细胞骨架的结构在维持细胞形态,保持细胞正常功能方面都具有重要意义。细胞内含有大量的骨架蛋白,其中很重要的一种就是微管。别看微管的名字里有个微小的“微”字,但它的功能和作用可一点也不微小,反而存在感极强!
微管不仅提供张力维持细胞形态,而且通过自身在细胞中不断地生长和收缩,以此为动力推拉细胞内各处的物质到其应有的位置,包括分裂细胞中染色体,这对细胞的存活和发挥正常功能具有不可或缺的作用。
细胞内部有大量的微管(图片来源:BBC《人体的奥秘之细胞的暗战》)
分裂细胞中星型纺锤体将染色体拉向两极
(图片来源:http://m-learning.zju.edu.cn/G2S/eWebEditor/uploadfile/20190515220727487.pdf)
这也是化疗药物癌紫杉醇能够杀死癌细胞的原因。细胞与人体正常细胞相比重要的特征是不受控制地快速分裂和生长,因此,通过破坏癌细胞的微管结构,就能影响癌细胞的分裂,从而有效地杀死癌细胞。
但是,人体也有一些正常的细胞因其功能特性需要维持快速分裂的状态,比如毛囊细胞,因此化疗药物在杀死癌细胞的同时也会杀死毛囊细胞,这也是为什么通过化疗的病人,在化疗后会发生脱发的原因。
细胞中的交通运输轨道——微管长啥样?
微管能够在细胞内发挥重要功能的基础在于其管状结构。微管是由微管蛋白组成的不分支的中空小管,内径为14-15nm,外径为22-25nm。α微管蛋白和β微管蛋白是构成微管的主要蛋白,α和β微管蛋白形成的异源二聚体是构成微管的基本单位。α/β以二聚体形式首尾相连构成原纤维,原纤维横向连接闭合形成管状结构。简单可以理解为α/β蛋白先串成类似于糖葫芦似的结构,然后13根类似的糖葫芦结构横向连接形成一个闭合的管状结构,所以从横断面上看,微管是由13根原纤维呈纵向平行排列而成的小管。
由α/β异二聚体微管蛋白构成的微管
(图片来源:浙江大学医学院干细胞与组织中心网络教育信息化平台)
类似于交通运输轨道有多种,例如地铁轨道、高铁轨道、火车轨道等,微管结构和功能也多样,主要分布在细胞核周围。
高等动物的细胞质、细胞表面的纤毛、神经的轴突以及细菌的鞭毛中都有微管结构且具有不同的形式。细胞质中的微管是高度动态的,以13根原纤维组成的单管的形式存在,纤毛和鞭毛中的微管为稳定的形式,由13根原纤维构成的A管和20根原纤维构成的B管形成的二联管构成;而纤毛和鞭毛生发中心基体中的微管以13根原纤维构成的A管和10根原纤维构成的B管和C管构成的三联管形式存在。
不同类型的微管示意图
(图片来源:浙江大学医学院干细胞与组织中心网络教育信息化平台)
就像电池一样,不同的两端性质并不一样。微管的两端也具有不同的性质,因此微管是具有极性的。简单来讲,微管最外端为β球蛋白的为正极,生长速度快;最外端为α球蛋白的为负极,生长速度慢。动态微管可以根据功能的需要在不断的增长(聚合)和缩短(解聚)之间变化,聚合和解聚所需要的能量,则由细胞内的能量货币GTP通过不断地结合或水解来提供。
微管的稳定性由游离的微管蛋白浓度和GTP水解为GDP的速度决定。当结合GTP的微管蛋白分子添加到微管末端的速度大于GTP水解为GDP的速度时,就会在正极形成GTP帽子结构,具有该特征的微管为处于延长期的微管。当GTP的微管蛋白聚合速度小于GTP的水解速度,GTP帽子结构迅速缩短,微管结构即变得非常不稳定,迅速脱落而是导致微管缩短(图5)。
微管的动态平衡对于细胞的正常生命活动至关重要,抗癌药物紫杉醇可以通过结合到α/β异二聚体蛋白上降低装配所需要的微管蛋白的浓度,促进微管的装配并且使微管异常稳定,破坏了微管正常的动态平衡从而对细胞造成致命伤害;秋水仙素和长春花碱等药物可以结合到装配好的微管上防止其他微管蛋白继续添加,也破坏了微管的正常动态平衡状态。
增长的微管和缩短的微管示意图
(图片来源:浙江大学医学院干细胞与组织中心网络教育信息化平台)
细胞中的交通运输轨道,微管是如何搭建起来的?
在细胞中具有一个特殊的区域被称为微管组织中心,位于细胞中央,也被称为中心体,是细胞中微管进行组装的区域。
传统大部分研究表明,所有的微管组织中心都具有γ微管球蛋白,这种球蛋白含量很低,可聚合成环状复合物,是微管形成的起始模板。只有γ球蛋白核化之后,微管的重要成分α/β球蛋白才可以添加上去。
γ微管蛋白成核作用示意图
(图片来源浙江大学医学院干细胞与组织中心网络教育信息化平台)
然而,这样的话就存在一个问题,美国佛罗里达州立大学医学院的Timonthy.L.Megraw教授和郑燚明博士团队通过果蝇的幼虫脂肪体细胞发现了一种可能的无中心体的微管组装方式,研究成果发表在国际著名学术刊物《Nature cell biology》上。
这个研究发现,