简介
湍流火焰又称紊流火焰,是指当管内气体作湍流流动(Re>4000)时,点燃形成的火焰叫做湍流火焰。
湍流火焰的波形和传播速度与层流火焰不同。湍流火焰锋面不断抖动,火焰锋面很厚形成一个区域。火焰传播速度等于脉动速度,其大小不但与可燃气体混合物的物化性质与参数有关,而且与湍流状态(即脉动速度)有关。
原子吸收光谱分析,非预混合型燃烧器的燃气与助燃气在火焰中混合燃烧,引起火焰强烈扰动,火焰在气体的紊流中燃烧产生,火焰的噪声也大。
湍流火焰的特点火焰长度缩短,焰锋变宽,并有明显的噪声,焰锋不再是光滑的表面,而是抖动的粗糙表面,火焰传播快。 特点:
1.湍流火焰传播速度较层流大几倍,不仅与燃料的物理化学性质有关,而且与湍流性质有关,湍流强度增大,将使湍流火焰传播速度增加,火焰更短。
2.燃烧室尺寸更紧凑,加上向外散热损失小,因此燃烧设备的经济性好。
3.湍流火焰伴随着噪音。
4.湍流火焰的燃烧产物内氧化氮(NO)含量少,因而对环境的污染小。
湍流火焰传播湍流火焰传播又叫湍流燃烧,是根据气流流动情况,预混气中火焰传播的一种方式.火焰传播分为层流火焰传播(层流燃烧)和湍流火焰传播(湍流燃烧)。
根据反应机理及火焰传播速度可分为:缓燃 ( deflagration) 爆震 ( detonation)。
湍流火焰速率缸内大尺度的湍流使火焰前锋面发生扭曲,除了使其面积增大外,还可使火焰前锋分裂成许多燃烧中心,导致湍流火焰速率大大增加。小尺度的湍流也可以大大增加火焰面中心分子与新鲜混合气中的分子的相互掺透,也使湍流速率增加。
在实际发动机的燃烧过程中,火焰传播速率与湍流强度之间的关系并不一定是线性的。湍流强度不高时,火焰传播速率与湍流强度之间的关系为线性关系。湍流增加到一定的强度时,火焰传播速率随湍流强度的增加而非线性增加趋势。如果湍流太强,火焰传播速率有可能会随湍流的强度的增加而降低。因此在汽油机中组织适当的湍流强度有助于提高火焰的传播速率,对燃烧过程有利,但太强的湍流不利于提高火焰传播速率,反而会使传播中的火焰猝熄。1
湍流燃烧试验测试技术湍流燃烧试验中需要测试的量一般为:温度、压力、燃烧图像和湍流参数。其中最为重要的就是要进行火焰图像的测试。目前,随着光学技术的发展,非接触式测量方法得到了广泛的应用。这也为对燃烧过程的深入测试分析提供了重要手段。一般用于记录燃烧火焰形态的非接触式光学测试方法有:PUF、直接高速摄影。
平面激光诱导荧光法PLIF即平面激光诱导荧光法(Planar-laser Induced Fluorescence)是一种较高灵敏度的浓度测量方法。其原理是当激光光子的能量(以波长人来表征)符合分子某两个能级之间的能量差距时,受该光子照射的分子就会吸收光子的能量而从基态跃迁到高能态。而处于高能态的分子并不稳定,因此在一定时间内高能态的分子将会通过辐射和非辐射两种方式释放能量而返回到基态,在释放能量的过程中由分子的自发辐射而产生的光称为荧光。荧光可以利用光电倍增管接收,荧光强度与荧光物质的浓度成正比例。这一特性是荧光方法运用于定量分析的基础。
激光诱导荧光法的原理是,原子被激光源谐振激励成为受激态。这种状态不稳定,将向较低能级自发辐射光子而衰减。这种自发辐射的光子既为荧光,其存在时间为。激光束聚焦到被测场内,采集光路接受荧光,荧光通过色散器件然后被检测器转换为电信号。将激光束扩展成光屏,可把整个平面成像到阵列检测器上。其测试原理如图1所示。PLIF技术在燃烧场中可以测量某些活化中心如0H组分等也可用于测速,测浓度、测温等方面。因为PLIF可提供喷雾和燃烧过程详细的2D平面信息,测量量级很小的活性组分,故已成为喷雾、燃烧过程组分浓度及火焰结构研究的重要工具。
直接高速摄影法直接高速摄影(摄像)法顾名思义就是利用高速摄影技术将燃烧过程的火焰形态变化直接拍摄记录下来,并在拍摄中使用以燃烧火焰为光源。主要用于火焰显示,燃料凝相燃烧研究以及粒子尺寸与速度测量等。
湍流燃烧试验装置及其相关硏究在众多国内外湍流燃烧试验研究所中,湍流燃烧试验装置根据其产生湍流的方式基本可以分为以下几类:
(1)喷射式湍流燃烧装置
这种试验装置是预混可燃气体通过设计的进气喷嘴或气道来进入燃烧室,形成一定的湍流并在相应的时刻点火,从而实现湍流燃烧的试验装置。如图2所示,该装置先通过预混箱配置可燃气体,该试验使用的是丙浣-空气预混合气。然后混合气在布置好的切向进气道中实现进气,从而产生湍流,再进行点火完成试验。该实验装置通过电磁阔来控制进气量,通过压力自动调节器来控制容弹内混合气的初始压力,进行了混合气燃烧火焰在不同参数下的试验并研究了初始条件参数下流动与火焰相互影响的机理。试验中还测得了进气过程中电磁阔闭合后燃烧弹内的湍流强度,通过采用激光多普勒仪得到了火花塞处的流动情况。
(2)风扇式湍流燃烧装置
这种试验装置是通过风扇在定容燃烧装置内旋转来形成湍流,风扇的转速决定着湍流的强弱。如图3所示,该装置中4个风扇在燃烧弹桶形内腔的边缘,如此布置可以实现各向同性较好的湍流并且混合的很均匀。试验时可以直接将燃气充入装置,在一定的湍流强度下进行燃烧。试验中采用LDV测试得到,以容弹中心为圆心80mm直径范围内,湍流强度的各向同性和均匀性分别在12%和20%以内。当风扇转速2500r/min时,湍流强度可达到2.0m/s,其湍流积分长度标尺与风扇转速无关大约为25mm。试验过程中还研究了湍流燃烧速度与湍流强度等参数之间的关系。这样的湍流燃烧装置由于内部具有风扇因而使其结构比较复杂,需要较大的燃烧室空间并且在多个风扇运行时,只有很好的协调配合各个风扇运转才能达到理想的各向同性流动。
(3)孔板式湍流燃烧装置
该种湍流燃烧装置是通过燃烧室内部运动的孔板来形成湍流,通过设计孔板结构以及控制孔板的运动速度来达到不同强度的湍流。试验进行时,一般是在孔板停止运动后的对应时刻来进行点火,以实现不同强度下的湍流燃烧。如图4所示的湍流燃烧装置,其整体结构为一个内腔为正方体定容燃烧弹。在容弹的内部布置了孔板,依靠电机的转动来带动孔板在导杆上快速平动,从而在容弹内产生湍流。通过改变孔板的孔径、孔板的拉动速度以及选择不同的点火时刻,便可得到湍流强度和标尺各异的湍流。此类装置的特点是结构相对简单,但是对燃烧室的几何形状有一定的要求,同时对装置的密封性能会造成一定的影响。2