基本概念
细胞的分裂是一个很有趣的现象,新细胞产生的速度之快是十分惊人的。例如某种细胞在分裂时,1个分裂成2个,2个分裂成4个……第x次分裂得到新细胞数y与分裂次数x的函数关系式: 。
这个函数是幂的形式,且自变量为幂指数,我们下面来研究这样的函数。
一般地,函数 (a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是R。2对于一切指数函数来讲,值域为(0, +∞)。
指数函数中 前面的系数为1。如: 都是指数函数; 不是指数函数。2
数学术语指数函数是数学中重要的函数。应用到值e上的这个函数写为exp(x)。还可以等价的写为ex,这里的e是数学常数,就是自然对数的底数,近似等于 2.718281828,还称为欧拉数。
当a>1时,指数函数对于x的负数值非常平坦,对于x的正数值迅速攀升,在 x等于0的时候,y等于1。当00且a≠1。
基本性质如图所示为a的不同大小影响函数图形的情况。
在函数中可以看到 :
(1) 指数函数的定义域为R,这里的前提是a大于0且不等于1。对于a不大于0的情况,则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。
(2) 指数函数的值域为(0, +∞)。
(3) 函数图形都是上凹的。
(4) a>1时,则指数函数单调递增;若0