版权归原作者所有,如有侵权,请联系我们

[科普中国]-阿基米德群牛问题

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

公元前3世纪下半叶古希腊科学家阿基米德在论著《群牛问题》中记载了本问题。该问题在1880年由阿姆托尔提供了一种解答,该解答需要求解二元二次方程t2-d*u2=1,因d的值达400多万亿,所以完全问题的最小解中牛的总数是一个超过20万位的数,可见阿基米德当时未必解出过这个问题,且它的结果也与实际不符。历史上对这个问题的研究丰富了初等数论的内容。

问题的来历公元前3世纪下半叶古希腊科学家阿基米德在论著《群牛问题》中记载了本问题。原文用诗句写成:

朋友,如果你自认为还有几分聪明,

请来准确无误地算一算太阳神的牛群,

它们聚集在西西里岛,

分成四群悠闲地品尝青草。

第一群象乳汁一般白洁,

第二群闪耀着乌黑的光泽。

第三群棕黄,

第四群毛色花俏,

每群牛有公有母、有多有少。

先告诉你各群的公牛比例:

白牛数等于棕牛数再加上黑牛数的三分之一又二分之一。

此外,黑牛数为花牛数的四分之一加五分之一,再加上全部棕公牛。

朋友,你还必须牢记花牛数是白牛的六分之一又七分之一,

再搭上全部的棕色公牛。

但是,各群的母牛都有不同的比例:

白色的母牛数等于全部黑色公母牛的三分之一又四分之一。

而黑母牛又是全部花牛的四分之一加上五分之一,

请注意,母牛公牛都要算进去。

同样的,花母牛的数字是全部棕牛的五分之一加六分之一。

最后,棕色母牛与全部白牛的六分之一加七分之一相一致。

朋友,若你能确切地告诉我这些公牛母牛膘肥体壮、毛色各异,

一共有多少聚集在那里,

你就不愧为精通算计。

但你还称不上聪明无比,

除非你能回答如下的问题:

把所有的黑白公牛齐集一起,

恰排成正方形,整整齐齐。

辽阔的西西里岛草地,

还有不少公牛在聚集。

当棕色的公牛与花公牛走到一起,

排成一个三角形状。

棕色公牛、花公牛头头在场,

其他的牛没有一头敢往里闯。

朋友,你若能够根据上述条件,

准确说出各种牛的数量,

那你就是胜利者,

你的声誉将如日月永放光芒。

题目: 西西里岛的草地上, 太阳神的牛群中有公牛也有母牛,公牛母牛都是白、 黑、 花、 棕4种毛色; 白色公牛多于棕色公牛, 多出的头数是黑色公牛的 12+13 ; 黑色公牛多于棕色公牛, 多出的头数是花公牛的 14+15 ; 花公牛多于棕色公牛, 多出的头数是白色公牛的 16+17 ; 白色母牛是黑牛的 13+14 ; 黑色母牛是花牛的 14+15 ;花母牛是棕色牛的 15+16 ; 棕色母牛是白色牛的 16+17 .问各色公牛与母牛有多少头?

问题的深意阿基米德的论文向来是以命题的形式来表达的,而这篇的体例不同,它是用诗句写成的。标题是给埃拉托塞尼的信。胡尔奇(Hultsch)曾猜想这是阿基米德“显本领(tour de force)”之作,以此向亚历山大的学者们(特别是阿波罗尼奥斯)挑战。但它的真实性颇值得怀疑,因为“群牛问题”大概很早以前就已存在,阿基米德只是重新研究而已,诗句也未必出自他的手1。

问题的叙述诗的大意是:西西里岛草原上有一大群牛,公牛和母牛各有4种颜色。设W、X、Y、Z分别表示白、黑、黄、花色的公牛数, w、x、y、z分别表示这白、黑、黄、花色的母牛数。

要求有

为一个正方形(数),

为一个三角形(数)(即形如 的数,m为正整数)。

求各种颜色牛的数目。

倒数第二个条件中的正方形数有两种解释:

一种是 ,因为要挤成一个正方形,还需要考虑身长与体宽的比,故右端不是任意两个正整数之积mn而是 (k是常数),称为“较简问题”。

另一种为 (完全平方数),即长与宽上牛的数目相等,称为“完全问题”2。

问题的解决“较简问题”已由武尔姆解决。“完全问题”在1880年为阿姆托尔(Amthor)所解决。

即使较简问题,牛的总数也已达到头之多!

而完全需要求解二元二次方程

最小解牛的总数是,位数超过20万!当时阿基米德未必解得出来。

而即使没有最后两个条件,群牛问题的最小正数解也达50'389'082,故它的叙述自然与实际不符——西西里岛再大也装不下这么多牛的。但历史上对这个问题的研究丰富了初等数论的内容3。

本词条内容贡献者为:

孙和军 - 副教授 - 南京理工大学