沉降平衡方法,超离心沉降法之一。如果在比沉降速度法低的转速和不可忽视溶质布朗运动的情况下继续离心,则由于离心力所引起的沉降与逆方向扩散相均衡,而使管内溶质的浓度分布保持一定。进而通过平衡时的浓度分布分析可计算出溶质的分子量。
简介瑞典科学家Theodor Svedberg于1925年发明分析超速离心技术,该技术基于两种实验模式,一种是浓度分布随时间实时改变(即沉降速率,SV),另一种是在相对低的离心力场中,沉降和扩散两种力最终达到平衡而形成稳定的浓度分布(即沉降平衡,SE)1。
Theodor Svedberg于第2年制造出世界上第一台新型超速离心机,并引入紫外-可见光检测系统实时监测沉降过程,首次测量了一些蛋白质的相对分子质量。结合数据分析方法,能够确定样本纯度,表征生物分子复合物的组装和分解机制,确定亚单位的化学计量,检测和表征大分子的构象变化,并测定平衡常数和热力学参数。但是很长一段时间里,这项技术在全球范围内都没有得到发展。直到现代的分析超速离心机诞生,分析超速离心技术才再次成为科学研究和医药行业研究的手段。
作为分析超速离心技术的一种,沉降平衡法可以测定多分散性大分子的平均分子量和分子量分布。通过在分析池中经低速长时间离心,样品浓度分布达到热力学平衡时,根据池内样品的浓度分布求算分子量。它不需要任何标准样品作参考,亦不需要知道样品分子的形状和水化程度。
沉降平衡是基于热力学理论,实验一般在较低的转速下进行(8000~20 000 r/min),当沉降作用与扩散作用达到平衡时可以测定分子平衡浓度的分布。在平衡状态下,浓度的分布只决定于质量,而与分子的形状无关。离心开始时,分子颗粒发生沉降,一段时间以后,沉降的结果造成了浓度梯度,因而产生了蛋白质分子反向扩散运动,当反向扩散与离心沉降达到平衡时,浓度分布就固定不变了。
沉降平衡法是样品溶液实验达到平衡是指用光学系统已测不到分析池内样品浓度分布的变化时间。
将所得数据处理可计算出蛋白质的精确相对分子质量。用沉降平衡实验测量相对分子质量是一种经典的相对分子质量测量手段。
在实验时使用分析用的超速离心机,为正确求出浓度分布有必要用干涉光学系统或光电扫描装置。由于实验技术和理论发展的结果,沉降平衡法已成为测定生物体各种大分子分子量的最标准的方法。对蛋白质亚基的解离和聚合等也可用本法进行研究。核酸及其他的大分子浮力密度的平衡密度梯度离心法测定虽与上述目的不同,但也是一种沉降平衡方法。
相比于另外一种沉降速度法其优点在于计算不用扩散系数,故沉降平衡法比沉降扩散法简便而精确。而其缺点在于离心时间长,通常要几十小时。
沉降平衡法的应用溶液中相互作用系统的测定分析超速离心技术可以用来研究溶液状态下蛋白与蛋白、蛋白与小分子以及蛋白与核酸之间的相互作用,确定相互作用的结合方式,并测定相互作用系统的结合或解离常数。
例:Andrea2等利用动力学、光谱学(荧光和NMR)、表面等离子体共振,交联反应,凝胶过滤实验,及沉降平衡法技术等多种手段对参与血红素降解的蛋白质之间的相互作用进行了深入的研究。该研究对于理解血红素动态平衡有着至关重要的意义。
化学计量学研究组装大分子组分的化学计量知识对于研究其生理学问题是十分重要的。当然,目前有许多用来确定化学计量的方法可供研究人员选择,比如电子显微镜、X射线晶体学、核磁共振光谱学、量热法以及光散射法等,而沉降平衡法因其可以直接获得关于生物大分子复合物的摩尔质量、形状、尺寸等数据结果而越来越受到研究人员的青睐。
例:钙离子通道蛋白(Cav1s和Cav2s)通过调节钙离子的进入参与基因调控、激素释放及突触传递等过程。CaVs受钙离子-钙调蛋白质(Ca2t/CaM)的反馈调节。前人研究表明复合物是以4︰2的形式存在溶液中,因为这些研究中的实验都受柱尺寸的限制,使得检测的相对分子质量范围限制在3~70kD,这就无法鉴别由于分子形状改变导致相对分子质量可能从81kD变成66kD的复合物。
因此,Eun3等利用沉降平衡实验分析,由于该方法与分子形状的改变没有关系,可以直接测量溶液中复合物的相对分子质量。沉降平衡实验结果表明:Ca2+/CaM与Cav1.2PreIQ-IQ复合物在化学计量学上是以2:1的形式形成的复合物,Ca2+/CaM与Cav1.2C-IQ复合物也是以2:1形式存在。而凝胶过滤实验误导了真实的化学计量学结果。
生物分子构象研究沉降平衡法已成功地用于检测大分子构象的变化。通过测定蛋白质分子的沉降系数及扩散系数,可以分析蛋白质在经修饰后其空间结构有无变化。
例:Song4等将沉降平衡法应用于染色质结构建立及其调控的分子机制的研究中,取得了突出的成果。
本词条内容贡献者为:
耿彩芳 - 副教授 - 中国矿业大学