版权归原作者所有,如有侵权,请联系我们

[科普中国]-隧道二极管

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏
定义

隧道二极管的工作符合发生隧道效应具备的三个条件:

(1)费米能级位于导带和满带内;

(2)空间电荷层宽度必须很窄(0.01微米以下);

(3)简并半导体P型区和N型区中的空穴和电子在同一能级上有交叠的可能性。

隧道二极管为双端子有源器件。其主要参数有峰谷电流比(IP/PV),其中,下标"P"代表"峰";而下标"V"代表"谷"。简单地说,所谓"隧道效应"就是指粒子通过一个势能大于总能量的有限区域。这是一种量子力学现象, 按照经典力学是不可能出现的。隧道二极管可以被应用于低噪声高频放大器及高频振荡器中(其工作频率可达毫米波段),也可以被应用于高速开关电路中。

基于重掺杂PN结隧道效应而制成的半导体两端器件。隧道效应是1958年日本江崎玲於奈在研究重掺杂锗PN结时发现的,故隧道二极管又称江崎二极管。这一发现揭示了固体中电子隧道效应的物理原理,江崎为此而获得诺贝尔奖金物理学奖。隧道二极管通常是在重掺杂 N型(或 P型)的半导体片上用快速合金工艺形成高掺杂的PN结而制成的;其掺杂浓度必须使PN结能带图中费米能级进入N型区的导带和P型区的价带;PN结的厚度还必须足够薄(150埃左右),使电子能够直接从N型层穿透PN结势垒进入P型层。这样的结又称隧道结。

隧道过程的定性分析

隧道二极管PN结两侧均为掺杂浓度高达的简并半导体。二极管的伏安特性曲线如下图1所示,利用简并半导体PN结的能带图可定性说明隧道二极管的特性。

由于PN结两侧高掺杂,费米能级都进入各自能带中,平衡时具有统一费米能级,则隧道二极管PN结的势垒区能带倾斜比普通PN结更为严重,势垒区厚度较薄,平衡时能带如下图2(a)所示,由于费米能级以上为空态,费米能级以下状态都被电子填满,则此时没有隧道电流。只有在外加电压作用下,P区和N区的费米能级发生移动,载流子发生运动才有可能形成电流。

下图2(b)为PN结反偏时能带图。反偏使P区费米能级相对N区费米能级向上移动,使P区以下一部分电子态与N区以上部分空态处于相同能量水平,则有P区的电子通过势垒“隧道”穿越到N区,形成反向隧道电流。对应于图1中1点。

图2(c)~(g)为PN结正向偏置时的能带图。随着正向偏压增加,相对于向上移动,对应于图2(c),以下部分电子与以上部分空态处于相同能量,则有N区电子穿过隧道到达P区形成正向隧道电流,对应于图1中2点。正向偏压增加,相对于向上移动,N区导带电子态与P区价带空态重叠更多,正向隧道电流增大,当能带重叠最多时,穿过隧道的载流子数达到摄大,正向隧道电流达到极大值,对应于图2(d)和图1中3点。正向电压进一步增加,相对更往上移,但N区电子态与P区空态重叠部分逐渐减小,穿过隧道的N区电子数减小,正向隧道电流减小,对应图2(e)和图1中4点。当正向偏压增加使向上移到N区的电子态与P区空态不发生重叠时,正向隧道电流降到最小值,对应图2(f)和图1中5点。当正向电压进一步增大时,则出现正常的PN结注入电流,其随外加电压指数增加,对应于图2(g)和图1中6点。

可见隧道二极管伏安特性曲线有两个正斜率区和一个负斜率区。从3点到5点范围,随正向电压增加,电流减小,出现负阻特性。在一定的电流范围内,电压是电流的多值函数1。

隧道二极管的符号

隧道二极管的电气符号如下图所示2:

隧道二极管特点及应用

隧道二极管的主要特点是它的正向电流—电压特性具有负阻(见图)。这种负阻是基于电子的量子力学隧道效应,所以隧道二极管开关速度达皮秒量级,工作频率高达100吉赫。隧道二极管还具有小功耗和低噪声等特点。隧道二极管可用于微波混频、检波(这时应适当减轻掺杂,制成反向二极管),低噪声放大、振荡等。由于功耗小,所以适用于卫星微波设备。还可用于超高速开关逻辑电路、触发器和存储电路等。

研究不同半导体材料制成的隧道二极管的基本特性,还能深入了解半导体中的能带结构和一些与量子力学有关的物理问题。