版权归原作者所有,如有侵权,请联系我们

[科普中国]-轨道计算

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

进一步介绍

观测是将原始数据馈入轨道确定算法。由地面观察员进行的观测通常由时间标记的方位角,高程,范围和或范围速率值组成。使用望远镜或雷达装置,因为裸眼观察不足以进行精确的轨道确定。

在确定轨道之后,可以使用数学传播技术来预测轨道物体的未来位置。随着时间的推移,轨道物体的实际路径往往偏离预测路径(特别是如果物体遭受诸如大气阻力等难以预测的扰动),并且使用新观测值的新的轨道确定用于重新 - 校准轨道知识。

对于美国及其伙伴国家,在光学和雷达资源允许的范围内,联合空间业务中心收集对地球轨道上所有物体的观测。观察结果用于维持卫星目录的整体准确性的新的轨道确定计算。碰撞避免计算可以使用该数据来计算一个轨道物体将与另一个轨道物体碰撞的概率。如果当前轨道的碰撞风险是不可接受的,则卫星运营人可以决定调整轨道。 (每次遇到极低概率情况时都不可能调整轨道;这样做会导致卫星快速耗尽推进剂。)当观测数量或质量提高时,轨道确定的准确性过程也有所改善,更少的“假警报”引起了卫星运营商的关注。包括俄罗斯和中国在内的其他国家也有类似的跟踪设备。2

轨道计算方法发展的历史轨道计算是从研究彗星的运动开始的。在牛顿以前﹐对天体运动的研究基本上带有几何描述的性质。第谷首先试图计算彗星轨道﹐但未获成功。困难在于只能观测彗星的方向﹐而不知道它同地球的距离﹐由于缺少力学规律的指引﹐无法根据这些定向资料求得天体的空间轨道。在牛顿运动定律和万有引力定律发现螬o开普勒定律有了力学解释﹐得到了椭圆运动的严格数学表达式﹐终于能利用少数几次时间相隔不长的观测来测定彗星的轨道。3

拉普拉斯方法拉普拉斯方法 第一个正式的轨道计算方法是牛顿提出的。他根据三次观测的资料﹐用图解法求出天体的轨道。哈雷用这个方法分析了1337~1698年间出现的24颗彗星﹐发现1531年﹑1607年和1682年出现的彗星是同一颗彗星﹐它就是有名的哈雷彗星。在这以后﹐欧拉﹑朗伯和拉格朗日等人也在轨道计算方面做了不少研究。拉普拉斯于1780年发表第一个完整的轨道计算的分析方法。这个方法不限制观测的次数﹐首先根据几次观测﹐定出某一时刻天体在天球上的视位置(例如赤经﹑赤纬)及其一次﹑二次导数﹐然后从这六个量严格而又简单地求出此时天体的空间坐标和速度﹐从而定出圆锥曲线轨道的六个要素。这样﹐拉普拉斯就将轨道计算转化为一个微分方程的初值测定问题来处理。从分析观点来看这是一个好方法﹐然而轨道计算是一个实际问题﹐要考虑结果的精确和计算的方便。拉普拉斯方法在实用上不甚方便。由于数值微分会放大误差﹐这就需要用十分精确的观测资料才能求出合理的导数。尽管许多人曾取得一定进展﹐但终究由于计算繁复﹐在解决实际问题时还是很少使用。

奥伯斯方法和高斯方法奥伯斯方法和高斯方法 与拉普拉斯不同﹐奥伯斯和高斯则认为﹐如果能根据观测资料确定天体在两个不同时刻的空间位置﹐那么对应的轨道也就可以确定了。也就是说﹐奥伯斯和高斯把轨道计算转化为一个边值测定问题来处理。因此﹐问题的关键是如何根据三次定向观测来定出天体在空间的位置。这既要考虑轨道的几何特性﹐又要应用天体运动的力学定律。这些条件中最基本的一条是天体必须在通过太阳的平面上运动。由于从观测掌握了天体在三个时刻的视方向﹐一旦确定了轨道平面的取向﹐除个别特殊情况外﹐天体在三个时刻的空间位置也就确定了。轨道平面的正确取向的条件是所确定的三个空间位置能满足天体运动的力学定律﹐例如面积定律。

彗星轨道大都接近抛物线﹐所以在计算轨道时﹐常将它们作为抛物线处理。完整的抛物线轨道计算方法是奥伯斯于1797年提出的。他采用牛顿的假设﹐得到了彗星地心距的关系式﹔再结合表示天体在抛物线轨道上两个时刻的向径和弦关系的欧拉方程﹐求出彗星的地心距﹔从而求出彗星的抛物线轨道。到现在为止﹐奥伯斯方法虽有不少改进﹐但基本原理并没有变﹐仍然是一个常用的计算抛物线轨道的方法。

1801年1月1日﹐皮亚齐发现了第一号小行星(谷神星)﹐不久高斯就算出了它的椭圆轨道﹐他的方法发表于1809年。高斯使用逐次近似法﹐先求出天体向径所围成的扇形面积与三角形面积之比﹐然后利用力学条件求得天体应有的空间位置﹐再从空间位置求得轨道。高斯不仅从理论上﹑而且从实际上解决了轨道计算问题。可以说﹐用三次观测决定轨道的实际问题是高斯首先解决的。高斯以后﹐虽然有人提出一些新方法﹐但基本原理仍没有变。

人造卫星轨道计算人造卫星轨道计算 计算小行星轨道的经典方法﹐原则上都能用来计算人造卫星的轨道。在考虑到人造卫星的运动特点之后﹐又提出了一些新的方法。人造卫星运动快﹐周期短﹐记时误差对轨道计算结果影响显著。巴特拉科夫在高斯方法的基础上﹐用增加观测资料的办法﹐对记时有误差的轨道计算法作了改进。近地卫星一天绕地球飞行十多圈﹐容易从观测定准它的周期﹐因而也就知道了轨道半长径﹐相应地提出了已知半长径的轨道计算法。人造卫星离地球近﹐视差现象明显﹐利用两站或多站同步观测容易求得卫星地心距﹐可以简化经典计算方法。针对卫星摄动影响大的情况﹐又出现了考虑摄动的轨道计算法。尽管这些方法多种多样﹐仍不外乎从观测资料求得两个点的向径﹐或一个点的向径和速度﹐从而得到轨道要素。

通过对人造卫星激光测距和多普勒测速﹐利用多站同步观测﹐或结合光学观测等方法﹐可以直接得到卫星的向径和速度﹐从而求得卫星的轨道。应用高速电子计算机﹐可以进行复杂的迭代运算。因此﹐目前更多的是综合各种类型的观测资料作轨道改进﹐而不把精力放在初始轨道的计算上。现代技术条件已能使入轨后的卫星轨道同预定轨道相差不大。这样﹐预定轨道就能作为初始轨道使用。4

计算机计算星球轨道原理以地球绕日运行为例,为叙述方便,以下用矢量形式表达。

因为其中M太为太阳质量,M地为地球质量,G为万有引力恒量,a为地球加速度,为单位矢量。所以我们可按等时间间隔dt(即等步长),以微分形式从地球的初值点逐点向下推算。设t=0时,地球的初值点为r0,v0和于是,地球经dt时间从初值点到达第一点,递推式为,

由于dt是人为设定的,是已知的,因此地球到达1点的近似值v,ra可由上式算出,算出1点值后,可把1点值作为初值,按步长dt继续推算出下一点的值,如此,可推算到第n点。由于dt值取得越小,递推的精度越高,我们可据此来控制计算误差。

设要计算地球在t=T时的r值,要求计算误差为e,t=0时的初值r0,a0,v0为已知。我们可将0到T的时间间隔划分为n个dt,即令计算步长dt=T/n,然后根据上述,按步长dt从t=0时的初值点推算到t=n·dt=T时的r值。然后将dt二分,即令计算步长dt1=dt/2,再按此新步长值dt1从t=0时的初值点算到t=2·n·dt1=T时的r值为r2,比较一下二分前后的r值,即看一看是否满足条件r2 - r