版权归原作者所有,如有侵权,请联系我们

[科普中国]-空气簇射

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

介绍定义

能量在10'4eV以上的宇宙线,由于通量小,只能采用间接测量,通过分析原初宇宙线与大气的相互作用来反推原初宇宙射线的性质。当宇宙线与大气的原子核发生碰撞后产生了一些光子(Y射线)、轻子和重子。这些次级粒子再重复作用产生更多下一级粒子,直到平均能量等于某临界值时,次级粒子的数目达到最大值,这个值被称为簇射极大值,此后粒子通过被大气吸收或逐渐衰变,使次级粒子的数量降低,整个过程称为“空气簇射”。地面上的主要辐射源是放射性矿物质;高空的主要辐射源是空气簇射的次级粒子,海拔在20公里处辐射最强,100公里以上的宇宙辐射的主要形式则是宇宙射线和太阳风。1

探测方式空气簇射的成份中重子较少、轻子居多。空气簇射的探测方式主要有三种方式:荧光望远镜、切伦可夫望远镜、地表或地下阵列。切伦可夫望远镜主要采集次级粒子产生的切伦可夫光;荧光望远镜可观测到带电粒子游离氮气产生的荧光,以上两种望远镜的特点是只能在夜间工作并且不能有明亮的千扰光源,因此平均工作的时间仅有约10%"'';地表或地下阵列则往往需要多个单元探测器组成,其特点是分布于广阔平坦的区域,次级粒子事例很多,有可全年操作的优点。

利用散布在大范围内的多个探测器组成的阵列来记录空气簇射粒子,可以把观测超高能初级宇宙线粒子的有效面积扩大到一平方公里左右。有关极高能量初级宇宙线的知识(能谱、方向等),就是研究广延空气簇射得到的。对于能量高于 1011电子伏的宇宙γ射线,可以在地面观测其空气簇射所产生的切连科夫辐射。目前全世界共有广延空气簇射阵列近三十个,面积最大的在澳大利亚悉尼。1

宇宙线能量高于 1014电子伏的初级宇宙线可产生数万到上亿个粒子(绝大部分是电子和光子),它们分布在数百米距离内,几乎同时到达地面。这种大范围的空气簇射现象叫做广延空气簇射。粗略地说,落到地面上的空气簇射粒子总数,正比于初级宇宙线的能量。利用空气簇射现象,可以在地面上探测能量极高的初级宇宙线。能量愈高,宇宙线粒子流强愈弱。每平方米面积上,平均一个月才射入一个能量高于 1016电子伏的初级宇宙线粒子。

空气簇射实验自从奥格尔发现了广延空气簇射时起,科学家们就在世界各地的一些荒凉不毛之地建造了越来越大的探测器阵列。

但直到20世纪60年代初,还没有专门为探索能量超过10eV的最高能粒子的起源建造足够大的阵列。麻省技术研究所罗西(Bruno Benedetto Rossi,1905-1993)研究组,在用闪烁探测器测量空气簇射的技术上作出重要贡献。

林斯利(John Linsley,1925-2002)领导的研究组在新墨西哥州遥远的火山牧场区(Volcano Ranch)建造和操作着这个新的阵列。第一套巨型阵列由19台探测器组成,每台的面积是33平方米,分布在8平方公里面积的地面上。火山牧场阵列运行了3年,搜集到能量高于10eV的簇射1000次,为有关知识基础作出了基本贡献。

林斯利通过他的阵列还获得了一项和各向同性结果同样重要,但更激动人心的发现。1962年的一天有个特别的空气簇射降临到阵列上,广阔分布的探测器探测到很大数量的簇射粒子。一般典型的簇射只有四五个探测器记录下粒子通过,而这个特别的簇射有15个探测器作出记录,粒子数比通常的簇射多得多。详细分析之后得出的结论是,这次簇射是由一个能量超过10eV的宇宙射线粒子激发出来的,它是那时观测到的具有最高能量的粒子,它比用奥格尔的先驱空气簇射实验探测到的粒子的能量大100,000倍。这个结果发表在《物理学评论通讯》(1963年)上,引起了广泛的关注。这个宇宙射线粒子的奇异本性于3年之后,其重大意义显得更加突出。人们认识到,这样巨大能量的宇宙射线将同大爆炸火球遗留下来的冷却辐射发生强烈的相互作用。

建在东京以西200公里明野(Akeno)地区的巨型空气簇射阵列AGASA (Akeno Giant Air Shower Array)(右图)由小到大,面积从1984年的1平方公里至20平方公里,到1991年的100平方公里,观测站在视野和重要性方面也由小变大。100平方公里的巨型阵列使用了111个塑料闪烁探测器,用来测量到达地面的空气簇射,天顶角(zenith angle)约涵盖至45度。另外还有27个混凝土覆盖着的附加探测器,为测量簇射产生的贯穿力很强的μ子成分而建造。每个探测器都用光纤与中心数据收集站连结起来。

当宇宙射线粒子穿过空间时,会同充满整个宇宙的低能质子相碰撞,从而损失能量。按照爱因斯坦的狭义相对论,来自银河系以外、到达地球的宇宙射线,将遇到如此之多的减能碰撞,以至于它们最大可能的能量为5×10电子伏,这个数值被称为GZK极限。1994年,AGASA和俄罗斯西伯利亚东部的雅库次克研究小组分别报告探测到了 2 x 10电子伏特的宇宙射线。这一能量超过费米国家加速器实验室Tevatron加速器可以加速的质子能量的1亿倍。

1995-2005年,AGASA多次探测到超过GZK极限的宇宙射线。理论上它们仅能来自银河系,但天文学家在银河系却未曾发现这种宇宙射线源。一种可能是AGASA的测量结果有误,另一种可能性则是狭义相对论错了。

一个庞大的国际合作项目Auger Project将取代AGASA的地位,它将分别于南美洲的阿根廷及北美洲的美国犹他州各建立一个面积约5000平方公里的地面阵列,并将在阵列中加入数个类似HiRes的荧光探测器。Auger试图以混合地面阵列与大气荧光两种探测器的方式,了解两种探测器的差异,互相校正能量定标,解决AGASA与Fly's Eye的冲突。HiRes与SLAC(Standard Linear Accelerator Center)现正联手研究空气在不同气压、成份下的荧光效率,对HiRes能量定标的问题会有很大的帮助。