版权归原作者所有,如有侵权,请联系我们

[科普中国]-电磁成形

科学百科
原创
科学百科为用户提供权威科普内容,打造知识科普阵地
收藏

简介

电磁成形工艺是一种新兴的高能率成形技术,是利用瞬间的高压脉冲磁场迫使坯料在冲击电磁力作用下,高速成形的一种成形方法。电磁成形属于高能(高速率)成形技术,高能(高速率)成形技术种类很多,但是电磁成形排除了爆炸成形的危险性,较之电液成形更方便。从20世纪50年代末,电磁成形在国内外迅速发展起来,成为金属塑性加工的一种新的工艺方法,深受各工业国的高度重视。现已广泛应用于机械、电子、汽车工业、轻化工及仪器仪表、航空航天、兵器工业等诸多领域,应用前景十分广阔1。

原理电容和控制开关形成放电回路,瞬时电流通过工作线圈产生强大的磁场,同时在金属工件中产生感应电流和磁场,在磁场力的作用下使工件成形。

历史电磁成形技术的研究始于20世纪60年代的美国。20世纪20年代,物理学家Kaptilap在脉冲磁场中做实验时发现,形成脉冲磁场的金属线圈易胀大、胀破,这一现象启发了人们对电磁成形原理的思考。1958年,美国通用电力公司在日内瓦举行的第二次国际和平原子能会议上,展出了世界上第一台电磁成形机。1962年,美国的Brower和Harrey发明了用于工业生产的电磁成形机。从此电磁成形引起各工业国的广泛关注和高度重视,电磁成形技术的研究取得了不少的应用成果,其中美国和前苏联在此领域处于领先地位。70年代初,前苏联专家研究了放电过程中毛坯变形对加工线圈和毛坯系统放电回路参数的影响,指出RLC回路只有在小变形时才能近似应用;对电磁成形和静力成形两种条件下压筋和成形半球时毛坯的极限变形程度进行了比较,指出铝合金、黄铜等电磁成形时的极限变形程度均高于静力成形时的极限变形程度,认为材料塑性提高是由于脉冲变形时变形分布更加均匀、材料强化降低等原因造成的;并于1979年研究了平板线圈的磁场分布,指出其分布的不均匀性(中心较弱,线圈1/2半径处最强)是导致毛坯中心出现冲压不足现象的主要原因。20世纪60年代中期,出现了储能为50kJ、200kJ和400kJ的电磁成形机。20世纪70年代中期已有400多台电磁成形机运行于各种生产线上。到了20世纪80年代中期电磁成形已在美国和前苏联、日本等国家得到广泛应用。

1994年MakotoMarata又研究了采用电极直接接触进行管料电磁胀形的方法,通过实验分析,研究了工作条件对电流和管料变形的影响,应用有限元法对其胀形过程进行了弹塑性分析。

我国电磁成形技术的研究始于20世纪60年代,文革时期中断。20世纪70年代末期,哈尔滨工业大学开始研究电磁成形的基本理论和工艺,并在实验装置的基础上,于1986年成功研制出我国首台生产用电磁成形机。目前国内有多所高等院校和研究所开展了电磁成形技术的研究,并使之应用于实际生产。

成形方法电磁成形加工在工业制造中的应用方法很多,可广泛用于管材的胀形、缩径、冲孔翻边和连接,板材冲裁、压印和成形,组装件的装配,粉末压实,电磁铆接及放射性物质的封存等。

对管材的电磁成形加工

管材成形是电磁成形技术中应用较多的方面。主要有管坯自由胀形、有模成形、管的校形、管段翻边、扩口及管坯的局部缩径、管段的缩口、异形管成形等。由于电磁成形时,管坯变形分布均匀,变形硬化不显著,因此材料的成形性得以提高,与静态的冲压相比,电磁成形方法可以提高胀形系数30%-70%。壁厚变薄甚至破裂是管坯胀形的主要问题。现在该工艺已应用于某些重要部件的收口成形及其校形。

对于管材的加工还可以细分为内向压缩成形加工和外向胀形成形加工。当工件处于线圈的内部、模具的外部时,工件将在电磁力的作用下向内压缩,此方法可用于管材的缩颈等的加工。与此相反,当工件处于线圈的外部、模具的内部时,工件则发生外向的胀形该方法常用于管材的胀形、翻边等的加工。

电磁冲裁

电磁冲裁装置线圈放电时,磁场力使驱动片向下运动,进而驱动滑块组合件。冲头在滑块的驱动下对工件进行冲裁加工。电磁冲裁与普通冲裁相比,成形设备和模具简单,使用方便,成形率高,属于高速成形。由于成形速度快,其工件的断面质量好,端面平整光滑,无圆角带,几乎没有断裂带和毛刺。因此,电磁冲裁要优于普通冲裁,如果能将其应用于实际工业生产中,必将带来巨大的经济效益。

电磁冲裁与普通冲裁相比,成形设备、模具简单,使用方便;成形效率高,属于高速成形;由于成形速度快,其工件的断面质量好,断面平整光滑,无圆角带,几乎没有断裂带和毛刺。因而可得出结论,电磁冲裁要优于普通冲裁,将其实际应用于工业生产中,可以带来巨大的经济效益。

电磁铆接

电磁铆接是基于电磁成形技术基础上发展起来的一种铆接方法。放电开关闭合的瞬间,初级线圈中流经一快速变化的冲击电流,在线圈周围产生强磁场。该磁场使与初级线圈耦合的磁极线圈产生感应电流,进而产生涡流磁场,两磁场相互作用产生强的涡流斥力,即放大器的输入力,此力在放大器中传播时经不断的反射和透射,输出一个波形和峰值,改变了的应力再传至铆钉,使铆钉在很短的时间内完成塑性变形。电磁铆接属冲击加载,加载速率高,应变力大,材料的变形方式不同于压铆等准静态加载,因而电磁铆接具有其他铆接方法无法替代的技术优势。80年代初我国开始研究电磁铆接技术,已研制成功固定式和手提式电磁铆接设备。但这些铆接设备采用高电压(4kV-10kV),致使设备体积庞大,成本高,安全可靠性差,放电频率高。高放电频率导致铆钉成形时间短,材料的应变率高,镦头容易产生微裂纹,加之人们对高电压的畏惧心理,所以限制了这一先进工艺方法的应用。国外从70年代初开始研究电磁铆接技术,到80年代末,该技术在航空工业中已成为解决铆接难题的一项关键技术。为消除高电压铆接时应变率过大而导致铆钉镦头出现微裂纹和剪切破坏,美国80年代末开始研究低电压电磁铆接技术,并申请了低压铆接专利,90年代初研制成功低压电磁铆接设备,开始在波音747、A320等飞机上应用。低电压铆接方法解决了高电压铆接不能解决的许多问题,使电磁铆接技术很快得到广泛应用。

电磁焊接

虽然很少见到有关电磁成形在焊接方面应用的报道,但当某些条件满足时,电磁成形确实可以应用于焊接。比如管与板之间的焊接,管与管之间的焊接以及薄板与厚板之间的焊接等。焊接所要求的条件包括清洁的表面,焊接时要有利于间隙中空气的排出,要有足够的能量和适当的频率(使运动件达到一定的速度),运动件要以某一角度(而不是垂直的)向静止件的表面撞击等。焊接的实现在于高速撞击使材料表面产生瞬时剧烈变形(特别是当以一定角度撞击时),从而产生高温甚至熔化,使两块材料焊合起来或通过扩散连接起来,从而实现材料的焊接。

工艺特点(1)非机械接触性加工。电磁力是工件变形的动力,它不同于一般的机械力,工件变形时施力设备无需与工件进行直接接触,因此工件表面无机械擦痕,也无需添加润滑剂,工件表面质量较好。电磁成形是以磁场为介质向坯料施加压力,磁场能够穿透非导体材料,实现非接触加工,可直接对有非金属涂层或表面已抛光的工件进行加工,成形后零件表面质量高。

(2)工件变形源于工件内部带电粒子受磁场力作用。因此,工件变形受力均匀,残余应力小,疲劳强度高,使用寿命长,加工后不影响零件的机械、物理、化学性能,也不需要热处理。电磁成形属高能率成形方法,与常规冲压成形相比,可有效提高材料塑性变形能力。因此,对于塑性差的难成形材料,是一种理想的成形方法。

(3)加工精度高。电磁力的控制精确,误差可在0.5%之内。电磁成形时,零件以很高的速度贴膜,零件与模具之间的冲击力很大,这不但有利于提高零件的贴膜性,而且可有效地减小零件弹复,显著地提高零件成形精度。

(4)加工效率高,时间短,成本低,便于实现生产的自动化。采用电磁成形方法可在一道工序中完成用常规成形方法多道工序才能完成的零件,有利于实现复合工艺。因此,可有效地缩短生产周期,降低成本。