有理数和无理数,谁更多?

科普中国 2016-04-18

  有理数是指一个整数a和一个非零整数b的比,即一个比值而非“有道理”的数。那么,有理数有多少呢?约公元前580年至公元前500年间,毕达哥拉斯学派认为“万物皆为数”,即宇宙的一切现象都能用有理数来表示,可见有理数之多。然而,该学派的弟子希伯索斯的惊人发现,第一次向人们揭示了有理数的缺陷,证明了它不能同连续的无限直线等同看待,有理数并没有布满数轴上的点,在数轴上存在着不能用有理数表示的“空隙”,而这些“空隙”就是无理数。那么无理数有多少?与有理数比较,谁更多?下面从三个方面进行比较:

   

  一、直观感觉比较

  常见的无理数有:①非完全平方数的平方根,如,···;②圆周率;③自然对数的底数e。事实上,我们还可以构造更多的无理数,如(其中\{0}),(其中)等等。直觉告诉我们,无理数要比有理数多,而且多很多。

  二、通过基数比较

  有理数在实数中是处处稠密的,即在数轴上任何小区间中都有有理数存在(并且有无穷多个)。尽管如此,有理数集是可列集,即全体有理数还只不过是一个和那样稀疏分布着的整数全体成为1—1对应的可列集,基数为N0。我们知道,在众多的无限数集中,最小的基数便是N0,而实数集具有连续基数c,可见无理数集合也有连续基数c。而c和N0的关系可由Cantor-Bernstein定理:  

   

  来说明。显然,从数量角度,无理数要比有理数多得多。

   

  那么,无理数比有理数多多少呢?下面从测度角度进行说明。

责任编辑:果仁

科普中国APP 科普中国微信 科普中国微博
科普中国
是中国科协为深入推进科普信息化建设而塑造的全新品牌,旨在以科普内容建设为重点,充分依托现有的传播渠道和平台,使科普信息化建设与传统科普深度融合,以公众关注度作为项目精准评估的标准,提升国家科普公共服务水平。

猜你喜欢